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Let G be a Polish group. The left completion M = &L can be seen
as a metric first-order structure with automorphism group G.

A compactification of G (equivalently, of M) will be a uniformly
continuous G-map v : G — X with dense image, where X is a
compact G-space.

The continuous functions f : G — R that factor through a

compactification of G are exactly the Roelcke uniformly continuous
functions (i.e. functions uniformly continuous with respect to both
the left and right uniformities of G). They form an algebra, UC(G).



Banach representations of compact G-spaces

If X is a compact G-space and V is a Banach space, a
representation of X on V is given by a pair

a: X — V*,
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where h is a continuous homomorphism and « is a
weak*-continuous G-map with respect to the dual action

G x V* = V*, (g¢)(v) = ¢(h(g) (V).
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a: X — V*,
h: G —lso(V),

where h is a continuous homomorphism and « is a
weak*-continuous G-map with respect to the dual action

G x V* = V*, (g¢)(v) = ¢(h(g) (V).

If X is a class of Banach spaces, the G-space X is said
KC-approximable if the family of its representations on Banach
spaces V € K separates points of X.
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Theorem

Good dynamical properties of a continuous function f : G — R
correspond to good classes K and the possibility of factoring f
through a K-approximable compactification X, as follows.

Name: f is  The orbit Gf C C(X) C C(G) K is the class of

AP is precompact Euclidean
WAP is weakly precompact reflexive
Asplund has metrizable closure in RX  Asplund
Tame, is precompact in B1(X) Rosenthal
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AP(G) C WAP(G) C Asp(G) C Tame,(G) C UC(G)
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Theorem
Equivalently, M is an Ng-categorical structure.
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The group Homeo ([0, 1]), for which it is known that WAP(G) is
trivial but Tame,(G) = UC(G), offers an example of a completely
unstable NIP structure.
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Functions as formulas, back

Proposition
Take f € UC(G) and define ¢ : G> — R by ¢(h,g) = f(h~1g).
Then ¢ extends to an invariant continuous function p : M? — R.

If G is Roelcke precompact, then o(x,y) is a O-definable predicate
on M (and so f = ¢1 = ¢(1,-) is an M-definable predicate on M).
Moreover, dynamical properties of f correspond to classical
model-theoretic properties of ¢, as follows.

f Vv ®

AP Euclidean 1 € aclf(0)
WAP  reflexive  @(x,y) is stable
Asp Asplund  (7): stable!
Tame, Rosenthal (x,y) is NIP
uc Banach any formula
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Strongly uniformly continuous functions

A continuous f : G — R is called strongly uniformly continuous
(SUC) if it factors through a compactification X such that, for all
x € X, the map

geEGrgxeX

is left uniformly continuous.

The algebra SUC(G) is the greatest subalgebra of UC(G) whose
associated compactification has the structure of a right topological
semigroup.

We have Asp(G) C SUC(G). Glasner and Megrelishvili showed
that SUC(Homeo ([0, 1])) is trivial.



WAP(G) = Asp(G) = SUC(G)

Theorem (I.)

If M is Ng-categorical and f € SUC(M), then the associated
formula is stable.

Corollary

Let G be a Roelcke precompact Polish group. Then
WAP(G) = Asp(G) = SUC(G).



An easy crucial example

Consider the function f on G = Aut(Q, <) given by
1 if0<g(0)

flg) = .

(&) 0 otherwise

Thus, p(g, h) = f(g~1h) = 1 means g(0) < h(0).

f is Tame, but not WAP.
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0 otherwise
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that h(a) < r for every a < r (a€ Q) and h € U;

a neighborhood of the identity of G is the stabilizer of a finite
tuple of rationals.



An easy crucial example

Consider the function f on G = Aut(Q, <) given by

f(g)

1 if0<g(0)
0 otherwise

Thus, (g, h) = f(g~1h) = 1 means g(0) < h(0).

f is Tame, but not WAP.

If it was SUC (sketch):
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we factor f through an SUC compactification X;
an irrational r € R\ Q can be seen as an element x, € X;

since f factors through X and g — gx, is left uniformly
continuous, there is a neighborhood U of the identity such
that h(a) < r for every a < r (a€ Q) and h € U;

a neighborhood of the identity of G is the stabilizer of a finite
tuple of rationals.

Contradiction.
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Representations on Hilbert spaces

The algebra Hilb(G) consists of the continuous functions that
factor through a Hilbert-approximable compactification of G.
Theorem (Ben Yaacov, |., Tsankov)

Let M be a classical Ro-categorical structure, G = Aut(M). Then
Hilb(G) = UC(G) if and only if M is stable and one-based.

Corollary

For the automorphism group of Hrushovski's pseudoplane we have
Hilb(G) € WAP(G) = UC(G).



Thank you.
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