\aleph_0 -categorical models and Roelcke precompact groups

Tomás Ibarlucía

Institut Camille Jordan Université Claude Bernard Lyon 1

Istanbul, March 27, 2015.

Setting

Let G be a Polish group. The left completion $M = \hat{G}_L$ can be seen as a metric first-order structure with automorphism group G.

Setting

Let G be a Polish group. The left completion $M = \widehat{G}_L$ can be seen as a metric first-order structure with automorphism group G.

A compactification of G (equivalently, of M) will be a uniformly continuous G-map $\nu : G \to X$ with dense image, where X is a compact G-space.

Setting

Let G be a Polish group. The left completion $M = \hat{G}_L$ can be seen as a metric first-order structure with automorphism group G.

A compactification of G (equivalently, of M) will be a uniformly continuous G-map $\nu : G \to X$ with dense image, where X is a compact G-space.

The continuous functions $f : G \to \mathbb{R}$ that factor through a compactification of G are exactly the Roelcke uniformly continuous functions (i.e. functions uniformly continuous with respect to both the left and right uniformities of G). They form an algebra, UC(G).

Banach representations of compact G-spaces

If X is a compact G-space and V is a Banach space, a representation of X on V is given by a pair

$$lpha: X o V^*,$$

 $h: G o \mathsf{lso}(V),$

where *h* is a continuous homomorphism and α is a weak*-continuous *G*-map with respect to the dual action $G \times V^* \to V^*$, $(g\phi)(v) = \phi(h(g)^{-1}(v))$.

Banach representations of compact G-spaces

If X is a compact G-space and V is a Banach space, a representation of X on V is given by a pair

$$lpha: X o V^*,$$

 $h: G o \mathsf{lso}(V),$

where *h* is a continuous homomorphism and α is a weak*-continuous *G*-map with respect to the dual action $G \times V^* \to V^*$, $(g\phi)(v) = \phi(h(g)^{-1}(v))$.

If \mathcal{K} is a class of Banach spaces, the *G*-space X is said \mathcal{K} -approximable if the family of its representations on Banach spaces $V \in \mathcal{K}$ separates points of X.

The dynamical hierarchy after Glasner and Megrelishvili

Theorem

Good dynamical properties of a continuous function $f : G \to \mathbb{R}$ correspond to good classes \mathcal{K} and the possibility of factoring f through a \mathcal{K} -approximable compactification X, as follows.

The dynamical hierarchy after Glasner and Megrelishvili

Theorem

Good dynamical properties of a continuous function $f : G \to \mathbb{R}$ correspond to good classes \mathcal{K} and the possibility of factoring f through a \mathcal{K} -approximable compactification X, as follows.

Name: f is	The orbit $Gf \subset \mathcal{C}(X) \subset \mathcal{C}(G)$	${\cal K}$ is the class of
AP	is precompact	Euclidean
WAP	is weakly precompact	reflexive
Asplund	has metrizable closure in \mathbb{R}^X	Asplund
Tame _u	is precompact in $\mathcal{B}_1(X)$	Rosenthal
UC	(-)	Banach spaces

The dynamical hierarchy after Glasner and Megrelishvili

Theorem

Good dynamical properties of a continuous function $f : G \to \mathbb{R}$ correspond to good classes \mathcal{K} and the possibility of factoring f through a \mathcal{K} -approximable compactification X, as follows.

Name: f is	The orbit $Gf \subset \mathcal{C}(X) \subset \mathcal{C}(G)$	${\cal K}$ is the class of
AP	is precompact	Euclidean
WAP	is weakly precompact	reflexive
Asplund	has metrizable closure in \mathbb{R}^X	Asplund
Tame _u	is precompact in $\mathcal{B}_1(X)$	Rosenthal
UC	(-)	Banach spaces

 $AP(G) \subset WAP(G) \subset Asp(G) \subset Tame_u(G) \subset UC(G)$

Roelcke precompact Polish groups after Ben Yaacov and Tsankov

G is Roelcke precompact if for every open $U \subset G$ there is a finite $F \subset G$ such that UFU = G.

Examples: S_{∞} , $\operatorname{Aut}(\mathbb{Q}, <)$, $\operatorname{Aut}(RG)$, $\operatorname{Homeo}(2^{\omega})$, $\operatorname{Iso}(\mathbb{U}_1)$, $\operatorname{Aut}(\mu)$, $\operatorname{Aut}^*(\mu)$, $\mathcal{U}(H)$, $\operatorname{Homeo}_+([0, 1])$, etc.

Roelcke precompact Polish groups after Ben Yaacov and Tsankov

G is Roelcke precompact if for every open $U \subset G$ there is a finite $F \subset G$ such that UFU = G.

Examples: S_{∞} , Aut(\mathbb{Q} , <), Aut(RG), Homeo(2^{ω}), Iso(\mathbb{U}_1), Aut(μ), Aut^{*}(μ), $\mathcal{U}(H)$, Homeo₊([0, 1]), etc.

Theorem

Equivalently, M is an \aleph_0 -categorical structure.

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	
WAP	reflexive	
Asp	Asplund	
Tame _u	Rosenthal	
UC	Banach	any formula

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	
Tame _u	Rosenthal	
UC	Banach	any formula

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	
Tame _u	Rosenthal	
UC	Banach	any formula

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	
Tame _u	Rosenthal	$\varphi(x,y)$ is NIP
UC	Banach	any formula

For the groups S_∞, Aut(µ), Aut^{*}(µ) and U(H) we have WAP(G) = UC(G).

- For the groups S_∞, Aut(µ), Aut^{*}(µ) and U(H) we have WAP(G) = UC(G).
- ▶ For Aut(\mathbb{Q} , <) we have WAP(G) \subsetneq Tame_{*u*}(G) = UC(G).

- For the groups S_∞, Aut(µ), Aut^{*}(µ) and U(H) we have WAP(G) = UC(G).
- ▶ For Aut(\mathbb{Q} , <) we have WAP(G) \subsetneq Tame_{*u*}(G) = UC(G).
- ▶ For Aut(*RG*), WAP(*G*) = Tame_{*u*}(*G*) \subseteq UC(*G*).

- For the groups S_∞, Aut(µ), Aut^{*}(µ) and U(H) we have WAP(G) = UC(G).
- ▶ For Aut(\mathbb{Q} , <) we have WAP(G) \subsetneq Tame_{*u*}(G) = UC(G).
- For Aut(RG), WAP(G) = Tame_u(G) \subsetneq UC(G).
- ► For Homeo(2^{ω}), WAP(G) = $Tame_u(G) \subsetneq UC(G)$.

- For the groups S_∞, Aut(µ), Aut^{*}(µ) and U(H) we have WAP(G) = UC(G).
- ▶ For Aut(\mathbb{Q} , <) we have WAP(G) \subsetneq Tame_{*u*}(G) = UC(G).
- ▶ For Aut(*RG*), WAP(*G*) = Tame_{*u*}(*G*) \subseteq UC(*G*).
- ► For Homeo(2^{ω}), WAP(G) = $Tame_u(G) \subsetneq UC(G)$.
- For $Iso(U_1)$, $Tame_u(G)$ is trivial.

- For the groups S_∞, Aut(µ), Aut^{*}(µ) and U(H) we have WAP(G) = UC(G).
- ▶ For Aut(\mathbb{Q} , <) we have WAP(G) \subsetneq Tame_u(G) = UC(G).
- For Aut(RG), WAP(G) = Tame_u(G) \subsetneq UC(G).
- ► For Homeo(2^{ω}), WAP(G) = Tame_u(G) \subseteq UC(G).
- For $Iso(U_1)$, $Tame_u(G)$ is trivial.

The group Homeo₊([0, 1]), for which it is known that WAP(G) is trivial but Tame_u(G) = UC(G), offers an example of a completely unstable NIP structure.

Functions as formulas, back

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	
Tame _u	Rosenthal	$\varphi(x,y)$ is NIP
UC	Banach	any formula

Functions as formulas, back

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	(?)
Tame _u	Rosenthal	arphi(x,y) is NIP
UC	Banach	any formula

Functions as formulas, back

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	(?): stable!
Tame _u	Rosenthal	arphi(x,y) is NIP
UC	Banach	any formula

Strongly uniformly continuous functions

A continuous $f : G \to \mathbb{R}$ is called strongly uniformly continuous (SUC) if it factors through a compactification X such that, for all $x \in X$, the map

$$g\in G\mapsto gx\in X$$

is left uniformly continuous.

Strongly uniformly continuous functions

A continuous $f : G \to \mathbb{R}$ is called strongly uniformly continuous (SUC) if it factors through a compactification X such that, for all $x \in X$, the map

$$g\in G\mapsto gx\in X$$

is left uniformly continuous.

The algebra SUC(G) is the greatest subalgebra of UC(G) whose associated compactification has the structure of a right topological semigroup.

Strongly uniformly continuous functions

A continuous $f : G \to \mathbb{R}$ is called strongly uniformly continuous (SUC) if it factors through a compactification X such that, for all $x \in X$, the map

$$g\in G\mapsto gx\in X$$

is left uniformly continuous.

The algebra SUC(G) is the greatest subalgebra of UC(G) whose associated compactification has the structure of a right topological semigroup.

We have $Asp(G) \subset SUC(G)$. Glasner and Megrelishvili showed that $SUC(Homeo_+([0, 1]))$ is trivial.

WAP(G) = Asp(G) = SUC(G)

Theorem (I.)

If M is \aleph_0 -categorical and $f \in SUC(M)$, then the associated formula is stable.

Corollary

Let G be a Roelcke precompact Polish group. Then WAP(G) = Asp(G) = SUC(G).

Consider the function f on $G = \operatorname{Aut}(\mathbb{Q}, <)$ given by $f(g) = \begin{cases} 1 & \text{if } 0 \leq g(0) \\ 0 & \text{otherwise} \end{cases}$. Thus, $\varphi(g, h) = f(g^{-1}h) = 1$ means $g(0) \leq h(0)$.

f is Tame_u but not WAP.

Consider the function f on $G = \operatorname{Aut}(\mathbb{Q}, <)$ given by $f(g) = \begin{cases} 1 & \text{if } 0 \le g(0) \\ 0 & \text{otherwise} \end{cases}$. Thus, $\varphi(g, h) = f(g^{-1}h) = 1$ means $g(0) \le h(0)$.

f is Tame_u but not WAP.

```
If it was SUC (sketch):
```

Consider the function f on $G = \operatorname{Aut}(\mathbb{Q}, <)$ given by $f(g) = \begin{cases} 1 & \text{if } 0 \leq g(0) \\ 0 & \text{otherwise} \end{cases}$. Thus, $\varphi(g, h) = f(g^{-1}h) = 1$ means $g(0) \leq h(0)$.

f is Tame_u but not WAP.

If it was SUC (sketch):

▶ we factor *f* through an SUC compactification *X*;

Consider the function f on $G = \operatorname{Aut}(\mathbb{Q}, <)$ given by $f(g) = \begin{cases} 1 & \text{if } 0 \le g(0) \\ 0 & \text{otherwise} \end{cases}$. Thus, $\varphi(g, h) = f(g^{-1}h) = 1$ means $g(0) \le h(0)$.

f is Tame_u but not WAP.

If it was SUC (sketch):

- ▶ we factor *f* through an SUC compactification *X*;
- ▶ an irrational $r \in \mathbb{R} \setminus \mathbb{Q}$ can be seen as an element $x_r \in X$;

Consider the function f on $G = \operatorname{Aut}(\mathbb{Q}, <)$ given by $f(g) = \begin{cases} 1 & \text{if } 0 \le g(0) \\ 0 & \text{otherwise} \end{cases}$. Thus, $\varphi(g, h) = f(g^{-1}h) = 1$ means $g(0) \le h(0)$.

f is Tame_u but not WAP.

If it was SUC (sketch):

- ▶ we factor *f* through an SUC compactification *X*;
- ▶ an irrational $r \in \mathbb{R} \setminus \mathbb{Q}$ can be seen as an element $x_r \in X$;
- since f factors through X and g → gx_r is left uniformly continuous, there is a neighborhood U of the identity such that h(a) < r for every a < r (a ∈ Q) and h ∈ U;</p>

Consider the function f on $G = \operatorname{Aut}(\mathbb{Q}, <)$ given by $f(g) = \begin{cases} 1 & \text{if } 0 \le g(0) \\ 0 & \text{otherwise} \end{cases}$. Thus, $\varphi(g, h) = f(g^{-1}h) = 1$ means $g(0) \le h(0)$.

f is Tame_u but not WAP.

If it was SUC (sketch):

- ▶ we factor *f* through an SUC compactification *X*;
- ▶ an irrational $r \in \mathbb{R} \setminus \mathbb{Q}$ can be seen as an element $x_r \in X$;
- since f factors through X and g → gxr is left uniformly continuous, there is a neighborhood U of the identity such that h(a) < r for every a < r (a ∈ Q) and h ∈ U;</p>
- a neighborhood of the identity of G is the stabilizer of a finite tuple of rationals.

Consider the function f on $G = \operatorname{Aut}(\mathbb{Q}, <)$ given by $f(g) = \begin{cases} 1 & \text{if } 0 \le g(0) \\ 0 & \text{otherwise} \end{cases}$. Thus, $\varphi(g, h) = f(g^{-1}h) = 1$ means $g(0) \le h(0)$.

f is Tame_u but not WAP.

If it was SUC (sketch):

- ▶ we factor *f* through an SUC compactification *X*;
- ▶ an irrational $r \in \mathbb{R} \setminus \mathbb{Q}$ can be seen as an element $x_r \in X$;
- since f factors through X and g → gx_r is left uniformly continuous, there is a neighborhood U of the identity such that h(a) < r for every a < r (a ∈ Q) and h ∈ U;</p>
- a neighborhood of the identity of G is the stabilizer of a finite tuple of rationals.

Contradiction.

Representations on Hilbert spaces

The algebra Hilb(G) consists of the continuous functions that factor through a Hilbert-approximable compactification of G.

Representations on Hilbert spaces

The algebra Hilb(G) consists of the continuous functions that factor through a Hilbert-approximable compactification of G.

Theorem (Ben Yaacov, I., Tsankov)

Let M be a classical \aleph_0 -categorical structure, G = Aut(M). Then Hilb(G) = UC(G) if and only if M is stable and one-based.

Representations on Hilbert spaces

The algebra Hilb(G) consists of the continuous functions that factor through a Hilbert-approximable compactification of G.

Theorem (Ben Yaacov, I., Tsankov)

Let M be a classical \aleph_0 -categorical structure, G = Aut(M). Then Hilb(G) = UC(G) if and only if M is stable and one-based.

Corollary

For the automorphism group of Hrushovski's pseudoplane we have $Hilb(G) \subsetneq WAP(G) = UC(G)$.

Thank you.

References

- I. Ben Yaacov and T. Tsankov. Weakly almost periodic functions, model-theoretic stability, and minimality of topological groups, preprint, arXiv:1312.7757.
- E. Glasner and M. Megrelishvili. Representations of dynamical systems on Banach spaces not containing l₁, Trans. Amer. Math. Soc. 364 (2012). New algebras of functions on topological groups arising from G-spaces, Fund. Math. 201 (2008).
- T. Ibarlucía.
 - The dynamical hierarchy for Roelcke precompact Polish groups, preprint, arXiv:1405.4613.