Elementary theory of well-structured algebras and nilpotent groups.

Ilya Kazachkov

Ikerbasque and UPV/EHU

Models and Groups

Istanbul

March 24-26, 2016

Elementary equivalence

The elementary theory $\operatorname{Th}(G)$ of a group is the set of all sentences which hold in G. Two groups G and H are called elementarily equivalent if $\operatorname{Th}(G)=\operatorname{Th}(H)$.

ALGEBRA
 $\leadsto \leadsto$ MODEL THEORY $\overline{\text { ISOMORPHISM }}{ }^{\rightsquigarrow} \overline{\text { ELEMENTARY EQUIVALENCE }}$

Problem
Classify groups (in a given class) up to elementary equivalence.

Map of Groups

Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian group

Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian group

$$
\text { Set } \quad \alpha_{p}(A)= \begin{cases}\operatorname{dim} A / p A, & \text { if finite; } \\ \infty, & \text { otherwise }\end{cases}
$$

Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian group

$$
\text { Set } \quad \alpha_{p}(A)= \begin{cases}\operatorname{dim} A / p A, & \text { if finite; } \\ \infty, & \text { otherwise }\end{cases}
$$

Szmielew characteristic of A is $\chi(A)=\left(\alpha_{2}(A), \alpha_{3}(A), \alpha_{5}(A), \ldots\right)$.

Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian group

$$
\text { Set } \quad \alpha_{p}(A)= \begin{cases}\operatorname{dim} A / p A, & \text { if finite; } \\ \infty, & \text { otherwise }\end{cases}
$$

Szmielew characteristic of A is $\chi(A)=\left(\alpha_{2}(A), \alpha_{3}(A), \alpha_{5}(A), \ldots\right)$.
Theorem (A, B - torsion free)
$\operatorname{Th}(A)=\operatorname{Th}(B) \Leftrightarrow \chi(A)=\chi(B)$.
isomorphic.

Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian group

$$
\text { Set } \quad \alpha_{p}(A)= \begin{cases}\operatorname{dim} A / p A, & \text { if finite; } \\ \infty, & \text { otherwise }\end{cases}
$$

Szmielew characteristic of A is $\chi(A)=\left(\alpha_{2}(A), \alpha_{3}(A), \alpha_{5}(A), \ldots\right)$.
Theorem (A, B-torsion free)
$\operatorname{Th}(A)=\operatorname{Th}(B) \Leftrightarrow \chi(A)=\chi(B)$.
Corollary
(1) A - torsion-free, C - divisible, then $\operatorname{Th}(A)=\operatorname{Th}(A \oplus C)$.
(2) All t.f. divisible abelian groups are elementarily equivalent.
(3) Two f.g. abelian groups are elementarily equivalent iff they are isomorphic.

Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian group

$$
\text { Set } \quad \alpha_{p}(A)= \begin{cases}\operatorname{dim} A / p A, & \text { if finite; } \\ \infty, & \text { otherwise }\end{cases}
$$

Szmielew characteristic of A is $\chi(A)=\left(\alpha_{2}(A), \alpha_{3}(A), \alpha_{5}(A), \ldots\right)$.
Theorem (A, B - torsion free)
$\operatorname{Th}(A)=\operatorname{Th}(B) \Leftrightarrow \chi(A)=\chi(B)$.
Corollary
(1) A - torsion-free, C - divisible, then $\operatorname{Th}(A)=\mathrm{Th}(A \oplus C)$.
(2) All t.f. divisible abelian groups are elementarily equivalent.
(3) Two f.g. abelian groups are elementarily equivalent iff they are isomorphic.

Classification of abelian groups up to isomorphism is hopeless.

Elegant classification up to elementary equivalence.

Nilpotent groups

A group G is called nilpotent if the lower central series:

$$
\Gamma_{0}(G)=G, \quad \Gamma_{i+1}(G)=\left[\Gamma_{i}(G), G\right]
$$

is eventually trivial. The minimal i so that $\Gamma_{i}(G)=1$ is called the nilpotency class of G.
Equivalently, a group G is nilpotent of class c if

$$
G \models \forall x_{0}, \ldots x_{c}\left[\left[\ldots\left[x_{0}, x_{1}\right], \ldots, x_{c-1}\right], x_{c}\right]=1
$$

Note that the class of nilpotent groups is a variety.

Nilpotent groups

A group G is called nilpotent if the lower central series:

$$
\Gamma_{0}(G)=G, \quad \Gamma_{i+1}(G)=\left[\Gamma_{i}(G), G\right]
$$

is eventually trivial. The minimal i so that $\Gamma_{i}(G)=1$ is called the nilpotency class of G.

Note that the class of nilpotent groups is a variety.

Nilpotent groups

A group G is called nilpotent if the lower central series:

$$
\Gamma_{0}(G)=G, \quad \Gamma_{i+1}(G)=\left[\Gamma_{i}(G), G\right]
$$

is eventually trivial. The minimal i so that $\Gamma_{i}(G)=1$ is called the nilpotency class of G.
Equivalently, a group G is nilpotent of class c if

$$
G \models \forall x_{0}, \ldots x_{c}\left[\left[\ldots\left[x_{0}, x_{1}\right], \ldots, x_{c-1}\right], x_{c}\right]=1
$$

Note that the class of nilpotent groups is a variety.

Nilpotent groups

Szmielew: Two finitely generated abelian groups are elementarily equivalent iff they are isomorphic.

Kargapolov: Two finitely generated nilpotent groups are elementarily equivalent iff they are isomorphic?

Nilpotent groups

Szmielew: Two finitely generated abelian groups are elementarily equivalent iff they are isomorphic.

Kargapolov: Two finitely generated nilpotent groups are elementarily equivalent iff they are isomorphic?

Theorem (Zilber, 71)
There are non-isomorphic, but elementarily equivalent finitely generated nilpotent groups of class 2.

Nilpotent groups

Szmielew: Two finitely generated abelian groups are elementarily equivalent iff they are isomorphic.

Kargapolov: Two finitely generated nilpotent groups are elementarily equivalent iff they are isomorphic?

Theorem (Zilber, 71)
There are non-isomorphic, but elementarily equivalent finitely generated nilpotent groups of class 2.

Theorem (Oger, 91)
Two f.g. nilpotent groups G and H are elementarily equivalent iff $G \times \mathbb{Z} \simeq H \times \mathbb{Z}$.

Central class of nilpotent groups

The study of unitriangular representations of nilpotent groups comes from the classical theory of connected nilpotent Lie groups.

Every finitely generated torsion-free nilpotent group G is a subgroup of some unitriangular matrix group $U T_{n}(\mathbb{Z}), n=n(G)$ Note that any fintey geneated dipooten group is a finte extension of a f.g. torsion-free nilpotent group.)

Central class of nilpotent groups

The study of unitriangular representations of nilpotent groups comes from the classical theory of connected nilpotent Lie groups.
Theorem (Hall, Malcev)
Every finitely generated torsion-free nilpotent group G is a subgroup of some unitriangular matrix group $U T_{n}(\mathbb{Z}), n=n(G)$.
(Note that any finitely generated nilpotent group is a finite extension of a f.g. torsion-free nilpotent group.)

Central class of nilpotent groups

The study of unitriangular representations of nilpotent groups comes from the classical theory of connected nilpotent Lie groups.
Theorem (Hall, Malcev)
Every finitely generated torsion-free nilpotent group G is a subgroup of some unitriangular matrix group $U T_{n}(\mathbb{Z}), n=n(G)$.
(Note that any finitely generated nilpotent group is a finite extension of a f.g. torsion-free nilpotent group.)

$$
U T_{n}(\mathbb{Z})=\left\{\left(\begin{array}{ccccc}
1 & a_{11} & a_{12} & \ldots & a_{1 n-1} \\
0 & 1 & a_{21} & \ldots & a_{2 n-2} \\
\vdots & \ddots & \ddots & & \\
\vdots & & \ddots & \ddots & \\
0 & \ldots & \ldots & 0 & 1
\end{array}\right)\right\}
$$

Nilpotent groups: role of $U T_{3}(\mathbb{Z})$

On the one hand $U T_{3}(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2 :

$$
1 \rightarrow \mathbb{Z}=Z\left(U T_{3}(\mathbb{Z})\right) \rightarrow U T_{3}(\mathbb{Z}) \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Nilpotent groups: role of $U T_{3}(\mathbb{Z})$

On the one hand $U T_{3}(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2 :

$$
1 \rightarrow \mathbb{Z}=Z\left(U T_{3}(\mathbb{Z})\right) \rightarrow U T_{3}(\mathbb{Z}) \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Theorem (Malcev)
Arithmetic is interpretable in $U T_{3}(\mathbb{Z})$. It follows that the elementary theory of $U T_{3}(\mathbb{Z})$ is undecidable.

Nilpotent groups: role of $U T_{3}(\mathbb{Z})$

On the one hand $U T_{3}(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2 :

$$
1 \rightarrow \mathbb{Z}=Z\left(U T_{3}(\mathbb{Z})\right) \rightarrow U T_{3}(\mathbb{Z}) \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Theorem (Malcev)
Arithmetic is interpretable in $U T_{3}(\mathbb{Z})$. It follows that the elementary theory of $U T_{3}(\mathbb{Z})$ is undecidable. Indeed, the center of $U T_{3}(\mathbb{Z})$ is $\mathbb{Z}=\left\{[a, b]^{k} \mid k \in \mathbb{Z}\right\}$:

- If $c_{1}, c_{2} \in Z\left(U T_{3}(\mathbb{Z})\right)$, then $c_{1}+c_{2}=c_{1} \cdot c_{2}$.

Nilpotent groups: role of $U T_{3}(\mathbb{Z})$

On the one hand $U T_{3}(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2 :

$$
1 \rightarrow \mathbb{Z}=Z\left(U T_{3}(\mathbb{Z})\right) \rightarrow U T_{3}(\mathbb{Z}) \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Theorem (Malcev)
Arithmetic is interpretable in $U T_{3}(\mathbb{Z})$. It follows that the elementary theory of $U T_{3}(\mathbb{Z})$ is undecidable. Indeed, the center of $U T_{3}(\mathbb{Z})$ is $\mathbb{Z}=\left\{[a, b]^{k} \mid k \in \mathbb{Z}\right\}$:

- If $c_{1}, c_{2} \in Z\left(U T_{3}(\mathbb{Z})\right)$, then $c_{1}+c_{2}=c_{1} \cdot c_{2}$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z\left(U T_{3}(\mathbb{Z})\right), x^{\prime} \in C(a)$, $y^{\prime} \in C(b)$ be so that $\left[x^{\prime}, b\right]=x$ and $\left[a, y^{\prime}\right]=y$, set $x \times y=\left[x^{\prime}, y^{\prime}\right]$.

Nilpotent groups: role of $U T_{3}(\mathbb{Z})$

On the one hand $U T_{3}(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2 :

$$
1 \rightarrow \mathbb{Z}=Z\left(U T_{3}(\mathbb{Z})\right) \rightarrow U T_{3}(\mathbb{Z}) \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Theorem (Malcev)
Arithmetic is interpretable in $U T_{3}(\mathbb{Z})$. It follows that the elementary theory of $U T_{3}(\mathbb{Z})$ is undecidable. Indeed, the center of $U T_{3}(\mathbb{Z})$ is $\mathbb{Z}=\left\{[a, b]^{k} \mid k \in \mathbb{Z}\right\}$:

- If $c_{1}, c_{2} \in Z\left(U T_{3}(\mathbb{Z})\right)$, then $c_{1}+c_{2}=c_{1} \cdot c_{2}$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z\left(U T_{3}(\mathbb{Z})\right), x^{\prime} \in C(a)$, $y^{\prime} \in C(b)$ be so that $\left[x^{\prime}, b\right]=x$ and $\left[a, y^{\prime}\right]=y$, set $x \times y=\left[x^{\prime}, y^{\prime}\right]$.
- $0_{\mathbb{Z}}$ is 1 and $1_{\mathbb{Z}}$ is $[a, b]$.

Nilpotent groups: role of $U T_{3}(\mathbb{Z})$

On the one hand $U T_{3}(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2 :

$$
1 \rightarrow \mathbb{Z}=Z\left(U T_{3}(\mathbb{Z})\right) \rightarrow U T_{3}(\mathbb{Z}) \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Theorem (Malcev)
Arithmetic is interpretable in $U T_{3}(\mathbb{Z})$. It follows that the elementary theory of $U T_{3}(\mathbb{Z})$ is undecidable. Indeed, the center of $U T_{3}(\mathbb{Z})$ is $\mathbb{Z}=\left\{[a, b]^{k} \mid k \in \mathbb{Z}\right\}$:

- If $c_{1}, c_{2} \in Z\left(U T_{3}(\mathbb{Z})\right)$, then $c_{1}+c_{2}=c_{1} \cdot c_{2}$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z\left(U T_{3}(\mathbb{Z})\right), x^{\prime} \in C(a)$, $y^{\prime} \in C(b)$ be so that $\left[x^{\prime}, b\right]=x$ and $\left[a, y^{\prime}\right]=y$, set $x \times y=\left[x^{\prime}, y^{\prime}\right]$.
- $0_{\mathbb{Z}}$ is 1 and $1_{\mathbb{Z}}$ is $[a, b]$.

Theorem (Ershov, 72)
The group $U T_{3}(\mathbb{Z})$ is interpretable in any f.g. nilpotent group which is not virtually abelian.

Groups elementarily equivalent to $U T_{3}(R)$

Let R be a domain, $S \equiv R$. The set $U T_{3}(R)$ is a nilpotent group (neither torsion-free nor finitely generated). Its centre is R, the ring R is interpretable in $U T_{3}(R)$.

$$
\begin{array}{ccl}
1 \rightarrow R \rightarrow & U T_{3}(R) & \rightarrow R^{2} \rightarrow 1 \\
1 \rightarrow S \rightarrow & U T_{3}(S) & \rightarrow S^{2} \rightarrow 1 \\
1 \rightarrow R^{*} \rightarrow & U T_{3}(R)^{*} \simeq U T_{3}\left(R^{*}\right) & \rightarrow R^{2^{*}} \rightarrow 1
\end{array}
$$

Groups elementarily equivalent to $U T_{3}(R)$

Let R be a domain, $S \equiv R$. The set $U T_{3}(R)$ is a nilpotent group (neither torsion-free nor finitely generated). Its centre is R, the ring R is interpretable in $U T_{3}(R)$.

$$
\begin{array}{ccl}
1 \rightarrow R \rightarrow & U T_{3}(R) & \rightarrow R^{2} \rightarrow 1 \\
1 \rightarrow S \rightarrow & U T_{3}(S) & \rightarrow S^{2} \rightarrow 1 \\
1 \rightarrow R^{*} \rightarrow & U T_{3}(R)^{*} \simeq U T_{3}\left(R^{*}\right) & \rightarrow R^{2^{*}} \rightarrow 1
\end{array}
$$

Theorem (Belegradek, 92)

$$
G \equiv U T_{3}(R) \text { iff } G \simeq U T_{3}\left(S, f_{1}, f_{2}\right) \text { and } S \equiv R
$$

Groups elementarily equivalent to $U T_{3}(R)$

Let R be a domain, $S \equiv R$. The set $U T_{3}(R)$ is a nilpotent group (neither torsion-free nor finitely generated). Its centre is R, the ring R is interpretable in $U T_{3}(R)$.

$$
\begin{array}{ccl}
1 \rightarrow R \rightarrow & U T_{3}(R) & \rightarrow R^{2} \rightarrow 1 \\
1 \rightarrow S \rightarrow & U T_{3}(S) & \rightarrow S^{2} \rightarrow 1 \\
1 \rightarrow R^{*} \rightarrow & U T_{3}(R)^{*} \simeq U T_{3}\left(R^{*}\right) & \rightarrow R^{2^{*}} \rightarrow 1
\end{array}
$$

Theorem (Belegradek, 92)
$G \equiv U T_{3}(R)$ iff $G \simeq U T_{3}\left(S, f_{1}, f_{2}\right)$ and $S \equiv R$.
$U T_{3}(R)=\left\{\left(\begin{array}{lll}1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1\end{array}\right)\right\}$, with the multiplication:

$$
(\alpha, \beta, \gamma)\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}+\alpha \beta^{\prime}\right)
$$

Let $f_{1}, f_{2}: R^{+} \times R^{+} \rightarrow R$ be two symmetric 2 -cocycles. New operation on $U T_{3}(R)$:
$(\alpha, \beta, \gamma) \circ\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}+\alpha \beta^{\prime}+f_{1}\left(\alpha, \alpha^{\prime}\right)+f_{2}\left(\beta, \beta^{\prime}\right)\right)$.

Groups elementarily equivalent to $U T_{n}(R)$ and to free nilpotent R-groups

$$
\begin{array}{ccccccc}
1 \rightarrow & R & \rightarrow & U T_{n}(R) & \rightarrow & U T_{n}(R) / R=G & \rightarrow 1 \\
1 \rightarrow Z(G) \simeq R^{k} & \rightarrow & G & \rightarrow & G / Z(G) & \rightarrow 1
\end{array}
$$

Groups elementarily equivalent to $U T_{n}(R)$ and to free nilpotent R-groups

$$
\begin{array}{ccccccc}
1 \rightarrow & R & \rightarrow & U T_{n}(R) & \rightarrow & U T_{n}(R) / R=G & \rightarrow 1 \\
1 \rightarrow Z(G) \simeq R^{k} & \rightarrow & G & \rightarrow & G / Z(G) & \rightarrow 1
\end{array}
$$

Theorem (Belegradek, 92)
$G \equiv U T_{n}(R)$ iff $G \simeq U T_{n}\left(S, f_{1}, f_{2}, \ldots, f_{n}\right)$ and $S \equiv R$. Here $f_{i}{ }^{\prime} s$ are symmetric 2-cocycles $f_{i}: S^{n} \simeq U T_{n}(S) / U T_{n}(S)^{\prime} \rightarrow S$.

Groups elementarily equivalent to $U T_{n}(R)$ and to free nilpotent R-groups

$$
\begin{array}{ccccccc}
1 \rightarrow & R & \rightarrow & U T_{n}(R) & \rightarrow & U T_{n}(R) / R=G & \rightarrow 1 \\
1 \rightarrow & Z(G) \simeq R^{k} & \rightarrow & G & \rightarrow & G / Z(G) & \rightarrow 1
\end{array}
$$

Theorem (Belegradek, 92)
$G \equiv U T_{n}(R)$ iff $G \simeq U T_{n}\left(S, f_{1}, f_{2}, \ldots, f_{n}\right)$ and $S \equiv R$. Here $f_{i}{ }^{\prime} s$ are symmetric 2-cocycles $f_{i}: S^{n} \simeq U T_{n}(S) / U T_{n}(S)^{\prime} \rightarrow S$.

Theorem (Miasnikov-Sohrabi, 2010, 2011)
$G \equiv F_{n, c}(R)$ iff G is an abelian deformation of $F_{n, c}(S), S \equiv R$.
Abelian deformation $=$ deformation of the operation on the group quotient by the commutator by the centre.

Groups elementarily equivalent to $U T_{n}(R)$ and to free nilpotent R-groups

$$
\begin{array}{ccccccc}
1 \rightarrow & R & \rightarrow & U T_{n}(R) & \rightarrow & U T_{n}(R) / R=G & \rightarrow 1 \\
1 \rightarrow & Z(G) \simeq R^{k} & \rightarrow & G & \rightarrow & G / Z(G) & \rightarrow 1
\end{array}
$$

Theorem (Belegradek, 92)
$G \equiv U T_{n}(R)$ iff $G \simeq U T_{n}\left(S, f_{1}, f_{2}, \ldots, f_{n}\right)$ and $S \equiv R$. Here $f_{i}{ }^{\prime} s$ are symmetric 2-cocycles $f_{i}: S^{n} \simeq U T_{n}(S) / U T_{n}(S)^{\prime} \rightarrow S$.

Theorem (Miasnikov-Sohrabi, 2010, 2011)
$G \equiv F_{n, c}(R)$ iff G is an abelian deformation of $F_{n, c}(S), S \equiv R$.
Abelian deformation $=$ deformation of the operation on the group quotient by the commutator by the centre.
Our goal
Find a general approach for both of the above results that can be used in more general settings.

Nilpotent groups and R-groups

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R.

Nilpotent groups and R-groups

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R.
The chief difficulty lies in attempting to replace the rule $r(x+y)=r x+r y$ (define an action of the ring).

Nilpotent groups and R-groups

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R.
The chief difficulty lies in attempting to replace the rule $r(x+y)=r x+r y$ (define an action of the ring).
(1) If N is a group which is complete and Hausdorff in its p-adic topology, then for any $x \in N$, the homomorphism of \mathbb{Z} into N taking n to x^{n} extends naturally to a homomorphism of the groups \mathbb{Z}_{p} of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.

Nilpotent groups and R-groups

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R.
The chief difficulty lies in attempting to replace the rule $r(x+y)=r x+r y$ (define an action of the ring).
(1) If N is a group which is complete and Hausdorff in its p-adic topology, then for any $x \in N$, the homomorphism of \mathbb{Z} into N taking n to x^{n} extends naturally to a homomorphism of the groups \mathbb{Z}_{p} of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.
(2) If K is any field of characteristic zero, then an exponent can be defined on $U T_{n}(K)$:

$$
(1+x)^{r}=1+r x+C_{r}^{2} x^{2}+\ldots
$$

(3) If K is the field of real numbers, then $U T_{n}(K)$ is a nilpotent Lie group, and for any $g \in U T_{n}(K)$, the set of elements of the form g^{r} defined in this way, is exactly the one-parameter subgroup generated by g.

Nilpotent groups and R-groups

Let R be an associative domain. The ring R gives rise to the category of R-groups. Enrich the language \mathcal{L} with new unary operations $f_{r}(x)$, one for any $r \in R$. For $g \in G$ and $\alpha \in R$ denote $f_{\alpha}(g)=g^{\alpha}$.
Definition
An structure G of the language $\mathcal{L}(R)$ is an R-group if:

- G is a group;
- $g^{0}=1, g^{\alpha+\beta}=g^{\alpha} g^{\beta}, g^{\alpha \beta}=\left(g^{\alpha}\right)^{\beta}$.

As the class of R-groups is a variety, so one has R-subgroups, R-homomorphisms, free R-groups, nilpotent R-groups etc.

Hall R-groups

Definition

Let R be a binomial ring. A nilpotent group G of a class m is called a Hall R-group if for all $x, y, x_{1}, \ldots, x_{n} \in G$ and any $\lambda, \mu \in R$ one has:

- G is a nilpotent R-group of class m;
- $\left(y^{-1} x y\right)^{\lambda}=\left(y^{-1} x y\right)^{\lambda}$;
- $x_{1}^{\lambda} \cdots x_{n}^{\lambda}=\left(x_{1} \cdots x_{n}\right)^{\lambda} \tau_{2}(x)^{C_{2}^{\lambda}} \cdots \tau_{m}(x)^{C_{m}^{\lambda}}$, where $\tau_{i}(x) \in \Gamma_{i-1}(F(x))$ is the i-th Petrescu word defined in the free group $F(x)$ by

$$
x_{1}^{i} \cdots x_{n}^{i}=\tau_{1}(x)^{C_{1}^{i}} \tau_{2}(x)^{C_{2}^{i}} \cdots \tau_{i}(x)^{C_{i}^{i}} .
$$

Hall R-groups

Proposition (Hall)

Let R be a binomial ring. Then the unitriangular group $U T_{n}(R)$ and, therefore, all its R-subgroups are Hall R-groups.

Theorem (Merzlyakov 68, Warfield, 76)
A finitely generated, torsion-free R-group is isomorphic to an R-subgroup of $U T_{n}(R)$, for some positive integer n, if R is a PID, binomial ring.

Groups elementarily equivalent to $U T_{3}(R)$

Theorem (Belegradek, 92)
$G \equiv U T_{3}(R)$ iff $G \simeq U T_{3}\left(S, f_{1}, f_{2}\right)$ and $S \equiv R$.

$$
\begin{array}{cccc}
1 \rightarrow R=Z\left(U T_{3}(R)\right) \rightarrow & U T_{3}(R) & \rightarrow R^{2} & =U T_{3}(R) / R \rightarrow 1 \\
1 \rightarrow S \rightarrow & G & \rightarrow S^{2} \rightarrow 1 \\
1 \rightarrow R^{*} \rightarrow & U T_{3}(R)^{*} & & \rightarrow R^{2^{*} \rightarrow 1}
\end{array}
$$

It is important that G is not an R-group!

Lie ring/algebra of a nilpotent group

Malcev (1949) proved that there is a category isomorphism between the category of torsion-free nilpotent \mathbb{Q}-groups and the category of nilpotent finite-dimensional rational Lie algebras (the isomorphism is given by the Baker-Campbell-Hausdorff formula).

Lie ring/algebra of a nilpotent group

Malcev (1949) proved that there is a category isomorphism between the category of torsion-free nilpotent \mathbb{Q}-groups and the category of nilpotent finite-dimensional rational Lie algebras (the isomorphism is given by the Baker-Campbell-Hausdorff formula).
Let G be t.f. nilpotent. Define $\operatorname{Lie}(G)$ as follows:

- $\operatorname{Lie}(G)=\oplus_{i=1}^{\infty} \Gamma_{i} / \Gamma_{i+1}$, as an abelian group;
- Let $x=\sum_{i=1}^{\infty} x_{i} \Gamma_{i+1}$ and $y=\sum_{i=1}^{\infty} y_{i} \Gamma_{i+1}$, where $x_{i}, y_{i} \in \Gamma_{i}$ are elements of $\operatorname{Lie}(G)$. Define a product \circ on $\operatorname{Lie}(G)$ by

$$
x \circ y=\sum_{k=2}^{\infty} \sum_{i+j=2}^{k}\left[x_{i}, y_{j}\right] \Gamma_{i+j+1}
$$

Lie ring/algebra of a nilpotent group

Malcev (1949) proved that there is a category isomorphism between the category of torsion-free nilpotent \mathbb{Q}-groups and the category of nilpotent finite-dimensional rational Lie algebras (the isomorphism is given by the Baker-Campbell-Hausdorff formula).
Let G be t.f. nilpotent. Define $\operatorname{Lie}(G)$ as follows:

- $\operatorname{Lie}(G)=\oplus_{i=1}^{\infty} \Gamma_{i} / \Gamma_{i+1}$, as an abelian group;
- Let $x=\sum_{i=1}^{\infty} x_{i} \Gamma_{i+1}$ and $y=\sum_{i=1}^{\infty} y_{i} \Gamma_{i+1}$, where $x_{i}, y_{i} \in \Gamma_{i}$ are elements of $\operatorname{Lie}(G)$. Define a product \circ on $\operatorname{Lie}(G)$ by

$$
x \circ y=\sum_{k=2}^{\infty} \sum_{i+j=2}^{k}\left[x_{i}, y_{j}\right] \Gamma_{i+j+1}
$$

Since Γ_{i} are definable in G, understanding groups \equiv to G is closely related to understanding rings \equiv to $\operatorname{Lie}(G)$.

Lie ring/algebra of a nilpotent group

Malcev (1949) proved that there is a category isomorphism between the category of torsion-free nilpotent \mathbb{Q}-groups and the category of nilpotent finite-dimensional rational Lie algebras (the isomorphism is given by the Baker-Campbell-Hausdorff formula).
Let G be t.f. nilpotent. Define $\operatorname{Lie}(G)$ as follows:

- $\operatorname{Lie}(G)=\oplus_{i=1}^{\infty} \Gamma_{i} / \Gamma_{i+1}$, as an abelian group;
- Let $x=\sum_{i=1}^{\infty} x_{i} \Gamma_{i+1}$ and $y=\sum_{i=1}^{\infty} y_{i} \Gamma_{i+1}$, where $x_{i}, y_{i} \in \Gamma_{i}$ are elements of $\operatorname{Lie}(G)$. Define a product \circ on $\operatorname{Lie}(G)$ by

$$
x \circ y=\sum_{k=2}^{\infty} \sum_{i+j=2}^{k}\left[x_{i}, y_{j}\right] \Gamma_{i+j+1}
$$

Since Γ_{i} are definable in G, understanding groups \equiv to G is closely related to understanding rings \equiv to $\operatorname{Lie}(G)$.
If we are to understand groups \equiv to an R-group G, we should understand rings \equiv to the Lie R-algebra $\operatorname{Lie}(G)$.

Idea of Miasnikov (late 1980’s)

(1) With an R-algebra A, associate a nice bilinear map $f_{A}: A / A n n(A) \times A / A n n(A) \rightarrow A^{2}$.
(2) A ring $S=S\left(f_{A}\right)=S(R) \supseteq R$, and the S-modules A^{2} and $A / A n n(A)$ are interpretable in A in the language of rings.

$$
f_{A}: \begin{array}{cccc}
A / A n n(A) & \times & A / A n n(A) & \rightarrow
\end{array} A^{2}, ~(x+\operatorname{Ann}(A) \quad, \quad y+\operatorname{Ann}(A)) \quad \mapsto \quad x \cdot y .
$$

Model theory of bilinear maps

- Consider a 2-sorted model $U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right)$, where p_{f} is a predicate which describes the map f_{A}, and $M=A / A n n(A), N=A^{2}$ are viewed as abelian groups.

Model theory of bilinear maps

- Consider a 2-sorted model $U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right)$, where p_{f} is a predicate which describes the map f_{A}, and $M=A / A n n(A), N=A^{2}$ are viewed as abelian groups.
- Associate to f_{A} a 3-sorted model $U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)$, where M, N and p_{f} are as above, $S=S(A)$ is a certain ring containing R, and s_{M}, s_{N} are predicates describing the action of S.

Model theory of bilinear maps

- Consider a 2-sorted model $U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right)$, where p_{f} is a predicate which describes the map f_{A}, and $M=A / A n n(A), N=A^{2}$ are viewed as abelian groups.
- Associate to f_{A} a 3-sorted model $U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)$, where M, N and p_{f} are as above, $S=S(A)$ is a certain ring containing R, and s_{M}, s_{N} are predicates describing the action of S.
- It is clear that U_{f} is interpretable in $U R_{f}$.

Model theory of bilinear maps

- Consider a 2-sorted model $U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right)$, where p_{f} is a predicate which describes the map f_{A}, and $M=A / A n n(A), N=A^{2}$ are viewed as abelian groups.
- Associate to f_{A} a 3-sorted model $U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)$, where M, N and p_{f} are as above, $S=S(A)$ is a certain ring containing R, and s_{M}, s_{N} are predicates describing the action of S.
- It is clear that U_{f} is interpretable in $U R_{f}$. A theorem of Miasnikov states that (under some conditions on A) the converse is also true!

Model theory of bilinear maps

- Consider a 2-sorted model $U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right)$, where p_{f} is a predicate which describes the map f_{A}, and $M=A / A n n(A), N=A^{2}$ are viewed as abelian groups.
- Associate to f_{A} a 3-sorted model $U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)$, where M, N and p_{f} are as above, $S=S(A)$ is a certain ring containing R, and s_{M}, s_{N} are predicates describing the action of S.
- It is clear that U_{f} is interpretable in $U R_{f}$. A theorem of Miasnikov states that (under some conditions on A) the converse is also true!

Example

- If $A=R$, then $S=R$.
- If $A=R \times R$, then $S=R \times R$.
- If A is a free nilpotent (Lie or associative) algebra, then $S=R$.
- If A is the direct product of the latter, then $S=R \times R$.

The ring S

$$
U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right) \quad U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)
$$

The ring S

$$
U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right) \quad U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)
$$

- Let $\mu: R \rightarrow P$ be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
(1) Addition is the same in R-module and P-module cases.
(2) And $r m=\mu(r) m$, for every $r \in R$ and $m \in M$.

The ring S

$$
U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right) \quad U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)
$$

- Let $\mu: R \rightarrow P$ be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
(1) Addition is the same in R-module and P-module cases.
(2) And $r m=\mu(r) m$, for every $r \in R$ and $m \in M$.
- An enrichment E of f is a pair of enrichments of M and N such that the map f is P-bilinear for the P-modules.

The ring S

$$
U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right) \quad U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)
$$

- Let $\mu: R \rightarrow P$ be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
(1) Addition is the same in R-module and P-module cases.
(2) And $r m=\mu(r) m$, for every $r \in R$ and $m \in M$.
- An enrichment E of f is a pair of enrichments of M and N such that the map f is P-bilinear for the P-modules.
- $E_{1} \leq E_{2}$ if there exists $P_{1} \hookrightarrow P_{2}$ such that the P_{2}-enrichments of M and N are P_{2}-enrichments of the P_{1}-enrichments of M and N.

The ring S

$$
U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right) \quad U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)
$$

- Let $\mu: R \rightarrow P$ be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
(1) Addition is the same in R-module and P-module cases.
(2) And $r m=\mu(r) m$, for every $r \in R$ and $m \in M$.
- An enrichment E of f is a pair of enrichments of M and N such that the map f is P-bilinear for the P-modules.
- $E_{1} \leq E_{2}$ if there exists $P_{1} \hookrightarrow P_{2}$ such that the P_{2}-enrichments of M and N are P_{2}-enrichments of the P_{1}-enrichments of M and N.
- There exists a maximal enrichment E_{M} of f, and $S=P(f)$ the ring of E_{M}.

Well-structured algebras

An algebra scheme $\mathcal{A}(n, \alpha)$, where $n \in \mathbb{N}, \alpha=\left(\alpha_{k}^{i, j}\right)_{a \leq i, j, k \leq n} \in \mathbb{Z}^{n^{3}}$ is a family of algebras that satisfy the following conditions:

- $A(R) \in \mathcal{A}(n, \alpha)$ is an R-algebra, where R is a domain of characteristic 0 ;
- the underlying module of the algebra $A(R)$ is a free R-module of rank n;
- there is a basis v_{1}, \ldots, v_{n} of the module of the algebra $A(R)$ with structural constants α, i.e.

$$
v_{i} v_{j}=\sum_{k=1, \ldots, n} \alpha_{k}^{i, j} v_{k}
$$

for all $i, j \in\{1, \ldots, n\}$.

Well-structured algebras

An algebra scheme $\mathcal{A}(n, \alpha)$, where $n \in \mathbb{N}, \alpha=\left(\alpha_{k}^{i, j}\right)_{a \leq i, j, k \leq n} \in \mathbb{Z}^{n^{3}}$ is a family of algebras that satisfy the following conditions:

- $A(R) \in \mathcal{A}(n, \alpha)$ is an R-algebra, where R is a domain of characteristic 0 ;
- the underlying module of the algebra $A(R)$ is a free R-module of rank n;
- there is a basis v_{1}, \ldots, v_{n} of the module of the algebra $A(R)$ with structural constants α, i.e.

$$
v_{i} v_{j}=\sum_{k=1, \ldots, n} \alpha_{k}^{i, j} v_{k}
$$

for all $i, j \in\{1, \ldots, n\}$.
An algebra $A(R) \in \mathcal{A}_{n, \alpha}$ is well-structured if:
$\left(\right.$ WS1) $\operatorname{Ann}(A(R)) \subseteq A(R)^{2}$.
(WS2) $A(R) / A(R)^{2}$ is a free R-module.
(WS3) $R=P\left(f_{A(R)}\right)=S$ is an isomorphism.

Abelian deformations and characterisation theorem for algebras

$$
U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right) \quad U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)
$$

Theorem
Let $A(R)$ be a well-structured R-algebra and B be a ring. Then

$$
B \equiv A \text { if and only if } B \simeq Q A(T, c)
$$

for some ring $T \equiv R$ and some symmetric 2-cocycle $c \in S^{2}\left(Q A / Q A^{2}, A n n(Q A)\right)$. That is B is an abelian deformation of $A(T)$.

Abelian deformations and characterisation theorem for algebras

$$
U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right) \quad U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)
$$

Theorem
Let $A(R)$ be a well-structured R-algebra and B be a ring. Then

$$
B \equiv A \text { if and only if } B \simeq Q A(T, c)
$$

for some ring $T \equiv R$ and some symmetric 2-cocycle $c \in S^{2}\left(Q A / Q A^{2}, A n n(Q A)\right)$. That is B is an abelian deformation of $A(T)$.

$$
\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}+c\left(x_{1}, y_{1}\right)\right),
$$

$$
\text { where } x_{1}, y_{1} \in A / A^{2}, x_{2}, y_{2} \in A^{2} / A n n(A) \text { and } x_{3}, y_{3} \in \operatorname{Ann}(A) \text {. }
$$

Abelian deformations and characterisation theorem for algebras

$$
U_{f}=\left(A / A n n(A), A^{2}, p_{f}\right) \quad U R_{f}=\left(M, N, S, p_{f}, s_{M}, s_{N}\right)
$$

Theorem
Let $A(R)$ be a well-structured R-algebra and B be a ring. Then

$$
B \equiv A \text { if and only if } B \simeq Q A(T, c)
$$

for some ring $T \equiv R$ and some symmetric 2-cocycle $c \in S^{2}\left(Q A / Q A^{2}, A n n(Q A)\right)$. That is B is an abelian deformation of $A(T)$.

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}+c\left(x_{1}, y_{1}\right)\right), \\
& \text { where } x_{1}, y_{1} \in A / A^{2}, x_{2}, y_{2} \in A^{2} / \operatorname{Ann}(A) \text { and } x_{3}, y_{3} \in \operatorname{Ann}(A) .
\end{aligned}
$$

Note that if R is a field or a local ring deformations disappear.

Lie algebras of some groups

Theorem (Belegradek; Miasnikov-Sohrabi; CFKR)
Let R be an integral domain of characteristic zero. And let G be one of the following groups:

- $U T_{n}$;
- free nilpotent group;
- directly indecomposable partially commutative nilpotent group.

Then $\operatorname{Lie}_{R}(G)$ is well-structured.

Characterisation theorem for groups

Theorem (CFKR)
Let G be a Hall R-group so that

- lower and upper central series of G coincide;
- Lie(G) is well-structured.

Let H be a group, $H \equiv G$. Then H is $Q G(S)$ over some ring S such that $S \equiv R$ as rings.

Characterisation theorem for groups

Theorem (CFKR)

Let G be a Hall R-group so that

- lower and upper central series of G coincide;
- Lie(G) is well-structured.

Let H be a group, $H \equiv G$. Then H is $Q G(S)$ over some ring S such that $S \equiv R$ as rings.
Corollary (Belegradek; Miasnikov-Sohrabi; CFKR)
Let R be a binomial ring. And let G be one of the following groups:

- $U T_{n}(R)$;
- free nilpotent R-group;
- directly indecomposable partially commutative nilpotent R-group.
Let H be a group elementarily equivalent to G. Then H is $Q G(S)$ over some ring S such that $S \equiv R$ as rings.

THANK YOU!

