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Elementary equivalence

The elementary theory Th(G) of a group is the set of all sentences
which hold in G. Two groups G and H are called elementarily
equivalent if Th(G) = Th(H).

ALGEBRA MODEL THEORY
ISOMORPHISM ELEMENTARY EQUIVALENCE

Problem
Classify groups (in a given class) up to elementary equivalence.



Map of Groups

Asynch
N



Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian
group



Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian
group

dimA/pa,  if finite;

00, otherwise.

Set  a,(A) = {



Abelian Groups
Let A be a torsion-free (without elements of finite order) abelian
group

dimA/pa,  if finite;

00, otherwise.

Set  a,(A) = {

Szmielew characteristic of A is x(A) = (a2(A), az(A), as(A),...).



Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian
group

dimA/pa,  if finite;

00, otherwise.

Set  a,(A) = {

Szmielew characteristic of A is x(A) = (a2(A), az(A), as(A),...).

Theorem (A, B - torsion free)
Th(A) = Th(B) < x(A) = x(B).



Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian
group

dimA/pa,  if finite;

00, otherwise.

Set  a,(A) = {

Szmielew characteristic of A is x(A) = (a2(A), az(A), as(A),...).
Theorem (A, B - torsion free)
Th(A) = Th(B) < x(A) = x(B).
Corollary
@ A - torsion-free, C - divisible, then Th(A) = Th(A& C).
@ All t.f. divisible abelian groups are elementarily equivalent.

© Two f.g. abelian groups are elementarily equivalent iff they are
isomorphic.



Abelian Groups

Let A be a torsion-free (without elements of finite order) abelian
group

dimA/pa,  if finite;

00, otherwise.

Set  a,(A) = {

Szmielew characteristic of A is x(A) = (a2(A), az(A), as(A),...).
Theorem (A, B - torsion free)
Th(A) = Th(B) < x(A) = x(B).
Corollary
@ A - torsion-free, C - divisible, then Th(A) = Th(A& C).
@ All t.f. divisible abelian groups are elementarily equivalent.

© Two f.g. abelian groups are elementarily equivalent iff they are
isomorphic.

Classification of abelian groups up Elegant classification up to
to isomorphism is hopeless. elementary equivalence.
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Nilpotent groups

A group G is called nilpotent if the lower central series:
Mo(G) =G, Tita(G) =1ri(G), Gl

is eventually trivial. The minimal / so that [;(G) = 1 is called the
nilpotency class of G.
Equivalently, a group G is nilpotent of class ¢ if

G = Vx0,...xc [[---[x0,x1], - - -y xe—1], xe) = 1.

Note that the class of nilpotent groups is a variety.
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Szmielew: Two finitely generated Kargapolov: Two finitely generated
abelian groups are elementarily nilpotent groups are elementarily
equivalent iff they are isomorphic. equivalent iff they are isomorphic?

Theorem (Zilber, 71)

There are non-isomorphic, but elementarily equivalent finitely
generated nilpotent groups of class 2.

Theorem (Oger, 91)

Two f.g. nilpotent groups G and H are elementarily equivalent iff
GxZ~HXTZ.
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Central class of nilpotent groups

The study of unitriangular representations of nilpotent groups
comes from the classical theory of connected nilpotent Lie groups.

Theorem (Hall, Malcev)

Every finitely generated torsion-free nilpotent group G is a
subgroup of some unitriangular matrix group UT,(Z), n = n(G).

(Note that any finitely generated nilpotent group is a finite
extension of a f.g. torsion-free nilpotent group.)

1 a1 a2 ... din—1
0 1 a1 ... ap-2

UT,(2) =
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Nilpotent groups: role of UT3(Z)
On the one hand UT3(Z) is unitriangular group, on the other hand
it is the free nilpotent group of class 2 and rank 2:
1 7Z=2Z(UT3(Z)) — UT3(Z) - Z? — 1

Theorem (Malcev)

Arithmetic is interpretable in UT3(Z). It follows that the
elementary theory of UT3(Z) is undecidable.

Indeed, the center of UT3(Z) is Z = {[a, b]* | k € Z}:

o If c1,cp € Z(UT3(Z)), then ¢c1 + o = ¢c1 - .

e Multiplication in Z: Let x,y € Z(UT3(Z)), x' € C(a),
y' € C(b) be so that [x/,b] = x and [a,y’] = y, set
xxy = [<,y]

@ 0z is 1 and 1z is [a, b].

Theorem (Ershov, 72)

The group UT5(Z) is interpretable in any f.g. nilpotent group
which is not virtually abelian.
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Groups elementarily equivalent to UT3(R)

Let R be a domain, S = R. The set UT3(R) is a nilpotent group
(neither torsion-free nor finitely generated). Its centre is R, the ring
R is interpretable in UT3(R).

1> R— UT3(R) —R?=1
1—+S— UT3(S) - 521
1— R — UT3(R)* ~UT3(R*) — R* =1

Theorem (Belegradek, 92)
G = UT3(R) iff G ~ UT3(S,fA,h) and S = R.

1 e

UT3(R) = {(g ! %)} with the multiplication:

(a. BN, B Y) = (a+d, B+, v+~ +ab).
Let f1,H : Rt x RT — R be two symmetric 2-cocycles. New
operation on UT3(R):

(o, B,7)o(, B',7) = (a+d, B+, v+ +af +A (o, o )+h(8, B')).
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quotient by the commutator by the centre.



Groups elementarily equivalent to UT,(R) and to
free nilpotent R-groups

1— R — UTp(R) — UT(R)/)R=G —1
1— Z(G)~RK — G — G/Z(G) —1

Theorem (Belegradek, 92)

G=UT,(R) iff G~ UT,(S,f,f,....f,) and S = R. Here f;'s
are symmetric 2-cocycles f; - S" ~ UT,(S)/UT,(S) — S.
Theorem (Miasnikov-Sohrabi, 2010, 2011)

G = Fc(R) iff G is an abelian deformation of F, (S), S = R.
Abelian deformation = deformation of the operation on the group
quotient by the commutator by the centre.

Our goal

Find a general approach for both of the above results that can be
used in more general settings.
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Nilpotent groups and R-groups
When considering non-commutative groups, it is natural to attempt
to extend the idea of a module to the noncommutative case - a
group admitting exponents in some ring R.
The chief difficulty lies in attempting to replace the rule
r(x +y) = rx + ry (define an action of the ring).

@ If N is a group which is complete and Hausdorff in its p-adic
topology, then for any x € N, the homomorphism of Z into N
taking n to x" extends naturally to a homomorphism of the
groups Z, of p-adic integers into N. We make N into a group
admitting exponents in the ring of p-adic integers.

@ If K is any field of characteristic zero, then an exponent can
be defined on UT,(K):

(L+x)" =14m+C%°+...

@ If K is the field of real numbers, then UT,(K) is a nilpotent
Lie group, and for any g € UT,(K), the set of elements of the
form g” defined in this way, is exactly the one-parameter
subgroup generated by g.



Nilpotent groups and R-groups

Let R be an associative domain. The ring R gives rise to the
category of R-groups. Enrich the language £ with new unary
operations f,(x), one for any r € R. For g € G and « € R denote

(67

fo(g) = g°.
Definition
An structure G of the language £(R) is an R-group if:

e G is a group;

0 g0 =1gt = gogl g% = (g*)’.

As the class of R-groups is a variety, so one has R-subgroups,
R-homomorphisms, free R-groups, nilpotent R-groups etc.



Hall R-groups

Definition
Let R be a binomial ring. A nilpotent group G of a class m is
called a Hall R-group if for all x,y,x1,...,x, € G and any

A\, 1 € R one has:
@ G is a nilpotent R-group of class m;
o (y hy)t = (b)Y
o X x) = (x-- ~><,,)’\7'2(X)C2A e Tm(x)%, where
Ti(x) € Ti—1(F(x)) is the i-th Petrescu word defined in the
free group F(x) by

xioxt = (%) Uma(x) G - (%)



Hall R-groups

Proposition (Hall)

Let R be a binomial ring. Then the unitriangular group UT,(R)
and, therefore, all its R-subgroups are Hall R-groups.

Theorem (Merzlyakov 68, Warfield, 76)

A finitely generated, torsion-free R-group is isomorphic to an
R-subgroup of UT,(R), for some positive integer n, if R is a PID,
binomial ring.



Groups elementarily equivalent to UT3(R)

Theorem (Belegradek, 92)
G = UT3(R) iff G =~ UT3(S,f,f) and S = R.

1—R=2Z(UT3(R)) » UT3(R) — R>=UT3(R)/R—1
1+S— G —~ 521
1= R — UT3(R)* — R > 1

It is important that G is not an R-group!



Lie ring/algebra of a nilpotent group

Malcev (1949) proved that there is a category isomorphism between
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is given by the Baker-Campbell-Hausdorff formula).
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Lie ring/algebra of a nilpotent group

Malcev (1949) proved that there is a category isomorphism between
the category of torsion-free nilpotent Q-groups and the category of
nilpotent finite-dimensional rational Lie algebras (the isomorphism
is given by the Baker-Campbell-Hausdorff formula).

Let G be t.f. nilpotent. Define Lie(G) as follows:
o Lie(G) = @°,Ij/Ti41, as an abelian group;

o Let x=> 2, xTiy1 and y = > 72, yilip1, where x;, y; € T;
are elements of Lie(G). Define a product o on Lie(G) by

00 k
xoy = Z Z [xi, Vil i js1-

k=2 j+j=2

Since I'; are definable in G, understanding groups = to G is closely
related to understanding rings = to Lie(G).

If we are to understand groups = to an R-group G, we should
understand rings = to the Lie R-algebra Lie(G).



Idea of Miasnikov (late 1980’s)

@ With an R-algebra A, associate a nice bilinear map
fa : AJAnn(A) x A/Ann(A) — A2,

@ Aring S = S(fa) = S(R) 2 R, and the S-modules A? and
A/Ann(A) are interpretable in A in the language of rings.

fo: A/Ann(A) X A/Ann(A) - A
(x +Ann(A) , y+Ann(A)) — x-y.
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is a predicate which describes the map f4, and
M = A/Ann(A), N = A? are viewed as abelian groups.



Model theory of bilinear maps

o Consider a 2-sorted model Ur = (A/Ann(A), A%, pr), where p¢
is a predicate which describes the map f4, and
M = A/Ann(A), N = A? are viewed as abelian groups.

@ Associate to fi a 3-sorted model URr = (M, N, S, pr, sm, Sn),
where M, N and pr are as above, S = S(A) is a certain ring

containing R, and sy, sy are predicates describing the action
of S.



Model theory of bilinear maps

o Consider a 2-sorted model Ur = (A/Ann(A), A%, pr), where p¢
is a predicate which describes the map f4, and
M = A/Ann(A), N = A? are viewed as abelian groups.

@ Associate to fi a 3-sorted model URr = (M, N, S, pr, sm, Sn),
where M, N and pr are as above, S = S(A) is a certain ring
containing R, and sy, sy are predicates describing the action
of S.

@ It is clear that Ur is interpretable in URy.



Model theory of bilinear maps

o Consider a 2-sorted model Ur = (A/Ann(A), A%, pr), where p¢
is a predicate which describes the map f4, and
M = A/Ann(A), N = A? are viewed as abelian groups.

@ Associate to fi a 3-sorted model URr = (M, N, S, pr, sm, Sn),
where M, N and pr are as above, S = S(A) is a certain ring
containing R, and sy, sy are predicates describing the action
of S.

@ It is clear that Ur is interpretable in URy. A theorem of
Miasnikov states that (under some conditions on A) the
converse is also truel



Model theory of bilinear maps

o Consider a 2-sorted model Ur = (A/Ann(A), A%, pr), where p¢
is a predicate which describes the map f4, and
M = A/Ann(A), N = A? are viewed as abelian groups.

@ Associate to fi a 3-sorted model URr = (M, N, S, pr, sm, Sn),
where M, N and pr are as above, S = S(A) is a certain ring

containing R, and sy, sy are predicates describing the action
of S.

@ It is clear that Ur is interpretable in URy. A theorem of
Miasnikov states that (under some conditions on A) the
converse is also truel

Example

o If A=R, then S=R.

olf A=R xR, then S=R x R.

o If Alis a free nilpotent (Lie or associative) algebra, then S = R.
o If Ais the direct product of the latter, then S = R x R.
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The ring S

Ur = (A/Ann(A), A%, pr)  URs = (M, N, S, ps,sm,sn)

@ Let : R — P be an inclusion of rings. A P-module structure
on M is an enrichment (wrt p) if:

@ Addition is the same in R-module and P-module cases.
@ And rm = p(r)m, for every r € R and m € M.

@ An enrichment E of f is a pair of enrichments of M and N
such that the map f is P-bilinear for the P-modules.

o E£1 < E5 if there exists P; < P5 such that the Py-enrichments
of M and N are Ps-enrichments of the Pi-enrichments of M
and N.

@ There exists a maximal enrichment Ep; of f, and S = P(f)
the ring of Ep;.



Well-structured algebras
An algebra scheme A(n,«), where n € N, a = (ak")ag,-’j,kgn czm
is a family of algebras that satisfy the following conditions:

e A(R) € A(n, ) is an R-algebra, where R is a domain of
characteristic 0;

@ the underlying module of the algebra A(R) is a free R-module
of rank n;

o there is a basis vy, ..., v, of the module of the algebra A(R)
with structural constants «, i.e.

i
ViVj = Q- Vi
k=1,...,n

forall i,j € {1,...,n}.



Well-structured algebras
An algebra scheme A(n,«), where n € N, a = (ak")ag,-’j,kgn czm
is a family of algebras that satisfy the following conditions:

e A(R) € A(n, ) is an R-algebra, where R is a domain of
characteristic 0;

@ the underlying module of the algebra A(R) is a free R-module
of rank n;

o there is a basis vy, ..., v, of the module of the algebra A(R)
with structural constants «, i.e.

ViVj = Z aj;jvk
forall i,j € {1,...,n}.
An algebra A(R) € A, o is well-structured if:
(WS1) Ann(A(R)) C A(R)2.
(WS2) A(R)/A(R)? is a free R-module.
(WS3) R = P(fary) = S is an isomorphism.



Abelian deformations and characterisation
theorem for algebras

Ur = (A/Ann(A), A, pr) URs = (M, N, S, pr,sm, sn)

Theorem
Let A(R) be a well-structured R-algebra and B be a ring. Then

B = A if and only if B ~ QA(T,c)

for some ring T = R and some symmetric 2-cocycle

ce SZ(QA/QAz7 Ann(QA)). That is B is an abelian deformation of
A(T).
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Abelian deformations and characterisation
theorem for algebras
Ur = (A/Ann(A), A%, pr)  URf = (M,N,S, pr,sm,sn)
Theorem
Let A(R) be a well-structured R-algebra and B be a ring. Then
B = A if and only if B ~ QA(T,c)
for some ring T = R and some symmetric 2-cocycle

ce SZ(QA/QAz7 Ann(QA)). That is B is an abelian deformation of
A(T).

(x1,x2,x3) + (y1,¥2,¥3) = (x1 + y1, %2 + yo,x3 + y3 + c(x1, 1)),
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where x1,y1 € A/Az, X, Yo € A /Ann(A) and x3, y3 € Ann(A).

Note that if R is a field or a local ring deformations disappear.



Lie algebras of some groups

Theorem (Belegradek; Miasnikov-Sohrabi; CFKR)

Let R be an integral domain of characteristic zero. And let G be
one of the following groups:

o UT,,
e free nilpotent group;

e directly indecomposable partially commutative nilpotent group.
Then Lieg(G) is well-structured.



Characterisation theorem for groups

Theorem (CFKR)

Let G be a Hall R-group so that
o lower and upper central series of G coincide;
o Lie(G) is well-structured.

Let H be a group, H= G. Then H is QG(S) over some ring S
such that S = R as rings.
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Corollary (Belegradek; Miasnikov-Sohrabi; CFKR)
Let R be a binomial ring. And let G be one of the following
groups:

o UT,(R);

@ free nilpotent R-group;

@ directly indecomposable partially commutative nilpotent

R-group.

Let H be a group elementarily equivalent to G. Then H is QG(S)
over some ring S such that S = R as rings.



THANK YOU!



