Elementary theory of well-structured algebras and nilpotent groups.

Ilya Kazachkov

Ikerbasque and UPV/EHU

Models and Groups

Istanbul

March 24-26, 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Elementary equivalence

The elementary theory Th(G) of a group is the set of all sentences which hold in G. Two groups G and H are called elementarily equivalent if Th(G) = Th(H).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Problem **Problem**

Classify groups (in a given class) up to elementary equivalence.

Map of Groups

DOC

æ

Let A be a torsion-free (without elements of finite order) abelian group

$$\mathsf{Set} \quad lpha_{\mathcal{P}}(\mathcal{A}) = \left\{egin{array}{cc} \mathsf{dim}\, \mathcal{A}_{\mathcal{P}\mathcal{A}}, & \mathsf{if finite;} \ \infty, & \mathsf{otherwise} \end{array}
ight.$$

Szmielew characteristic of A is $\chi(A) = (\alpha_2(A), \alpha_3(A), \alpha_5(A), \dots)$. Theorem (A, B - torsion free)Th $(A) = Th(B) \Leftrightarrow \chi(A) = \chi(B)$. Corollary

- $O : A \rightarrow torsion-free$, $C \rightarrow divisible$, then $Th(A) = Th(A \oplus C)$.
- O All Lf. divisible abelian groups are elementarily equivalent.
- Two f.g. abelian groups are elementarily equivalent iff they are isomorphic.

Let A be a torsion-free (without elements of finite order) abelian group

Set
$$\alpha_{\rho}(A) = \begin{cases} \dim A/\rho A, & \text{if finite;} \\ \infty, & \text{otherwise.} \end{cases}$$

Szmielew characteristic of A is $\chi(A) = (\alpha_2(A), \alpha_3(A), \alpha_5(A), \dots)$. Theorem (A, B - torsion free) Th(A) = Th(B) $\Leftrightarrow \chi(A) = \chi(B)$. Corollary

- A torsion-free, C divisible, then $Th(A) = Th(A \oplus C)$.
- All t.f. divisible abelian groups are elementarily equivalent.
- Two f.g. abelian groups are elementarily equivalent iff they are isomorphic.

Classification of abelian groups up to isomorphism is hopeless.

Elegant classification up to elementary equivalence.

Let A be a torsion-free (without elements of finite order) abelian group

Set
$$\alpha_{p}(A) = \begin{cases} \dim A/pA, & \text{if finite;} \\ \infty, & \text{otherwise.} \end{cases}$$

Szmielew characteristic of A is $\chi(A) = (\alpha_2(A), \alpha_3(A), \alpha_5(A), \dots)$.

Theorem (A, B - torsion free) Th(A) = Th(B) $\Leftrightarrow \chi(A) = \chi(B)$. Corollary

- A torsion-free, C divisible, then $Th(A) = Th(A \oplus C)$.
- ② All t.f. divisible abelian groups are elementarily equivalent.
- Two f.g. abelian groups are elementarily equivalent iff they are isomorphic.

Classification of abelian groups up to isomorphism is hopeless.

Elegant classification up to elementary equivalence.

Let A be a torsion-free (without elements of finite order) abelian group

Set
$$\alpha_{p}(A) = \begin{cases} \dim A/pA, & \text{if finite;} \\ \infty, & \text{otherwise.} \end{cases}$$

Szmielew characteristic of A is $\chi(A) = (\alpha_2(A), \alpha_3(A), \alpha_5(A), \dots)$. Theorem (A, B - torsion free) Th(A) = Th(B) $\Leftrightarrow \chi(A) = \chi(B)$. Corollary

• A - torsion-free, C - divisible, then $Th(A) = Th(A \oplus C)$.

- Output: A state of the state
- Two f.g. abelian groups are elementarily equivalent iff they are isomorphic.

Classification of abelian groups up to isomorphism is hopeless.

Elegant classification up to elementary equivalence.

Sac

Let A be a torsion-free (without elements of finite order) abelian group

Set
$$\alpha_{p}(A) = \begin{cases} \dim A/pA, & \text{if finite;} \\ \infty, & \text{otherwise.} \end{cases}$$

Szmielew characteristic of A is $\chi(A) = (\alpha_2(A), \alpha_3(A), \alpha_5(A), ...)$. Theorem (A, B - torsion free) Th(A) = Th(B) $\Leftrightarrow \chi(A) = \chi(B)$. Corollary

- A torsion-free, C divisible, then $Th(A) = Th(A \oplus C)$.
- 2 All t.f. divisible abelian groups are elementarily equivalent.
- Two f.g. abelian groups are elementarily equivalent iff they are isomorphic.

Classification of abelian groups up to isomorphism is hopeless.

Elegant classification up to elementary equivalence.

Let A be a torsion-free (without elements of finite order) abelian group

Set
$$\alpha_{p}(A) = \begin{cases} \dim A/pA, & \text{if finite;} \\ \infty, & \text{otherwise.} \end{cases}$$

Szmielew characteristic of A is $\chi(A) = (\alpha_2(A), \alpha_3(A), \alpha_5(A), ...)$. Theorem (A, B - torsion free) Th(A) = Th(B) $\Leftrightarrow \chi(A) = \chi(B)$. Corollary

- A torsion-free, C divisible, then $Th(A) = Th(A \oplus C)$.
- 2 All t.f. divisible abelian groups are elementarily equivalent.
- Two f.g. abelian groups are elementarily equivalent iff they are isomorphic.

Classification of abelian groups up to isomorphism is hopeless.

Elegant classification up to elementary equivalence.

A group G is called nilpotent if the lower central series:

 $\Gamma_0(G) = G, \quad \Gamma_{i+1}(G) = [\Gamma_i(G), G]$

is eventually trivial. The minimal *i* so that $\Gamma_i(G) = 1$ is called the nilpotency class of *G*. Equivalently, a group *G* is nilpotent of class *c* if

$$G \models \forall x_0, \ldots x_c [[\ldots [x_0, x_1], \ldots, x_{c-1}], x_c] = 1.$$

うして ふゆう ふほう ふほう うらつ

Note that the class of nilpotent groups is a variety.

A group G is called nilpotent if the lower central series:

 $\Gamma_0(G) = G, \quad \Gamma_{i+1}(G) = [\Gamma_i(G), G]$

is eventually trivial. The minimal *i* so that $\Gamma_i(G) = 1$ is called the nilpotency class of *G*.

Equivalently, a group G is nilpotent of class c if

 $G \models \forall x_0, \ldots x_c \ [[\ldots [x_0, x_1], \ldots, x_{c-1}], x_c] = 1.$

(日) (伊) (日) (日) (日) (0) (0)

Note that the class of nilpotent groups is a variety.

A group G is called nilpotent if the lower central series:

$$\Gamma_0(G) = G, \quad \Gamma_{i+1}(G) = [\Gamma_i(G), G]$$

is eventually trivial. The minimal *i* so that $\Gamma_i(G) = 1$ is called the nilpotency class of *G*. Equivalently, a group *G* is nilpotent of class *c* if

$$G \models \forall x_0, \ldots x_c \ [[\ldots [x_0, x_1], \ldots, x_{c-1}], x_c] = 1.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Note that the class of nilpotent groups is a variety.

Szmielew: Two finitely generated abelian groups are elementarily equivalent iff they are isomorphic.

Kargapolov: Two finitely generated nilpotent groups are elementarily equivalent iff they are isomorphic?

うして ふゆう ふほう ふほう うらつ

Theorem (Zilber, 71)

There are non-isomorphic, but elementarily equivalent finitely generated nilpotent groups of class 2.

Theorem (Oger, 91)

Two f.g. nilpotent groups G and H are elementarily equivalent iff $G imes \mathbb{Z} \simeq H imes \mathbb{Z}$.

Szmielew: Two finitely generated abelian groups are elementarily equivalent iff they are isomorphic.

Theorem (Zilber, 71)

Kargapolov: Two finitely generated nilpotent groups are elementarily equivalent iff they are isomorphic?

うして ふゆう ふほう ふほう うらつ

There are non-isomorphic, but elementarily equivalent finitely generated nilpotent groups of class 2.

Theorem (Oger, 91)

Two f.g. nilpotent groups G and H are elementarily equivalent iff $G \times \mathbb{Z} \simeq H \times \mathbb{Z}$.

Szmielew: Two finitely generated abelian groups are elementarily equivalent iff they are isomorphic.

Theorem (Zilber, 71)

Kargapolov: Two finitely generated nilpotent groups are elementarily equivalent iff they are isomorphic?

うして ふゆう ふほう ふほう うらつ

There are non-isomorphic, but elementarily equivalent finitely generated nilpotent groups of class 2.

Theorem (Oger, 91)

Two f.g. nilpotent groups G and H are elementarily equivalent iff $G \times \mathbb{Z} \simeq H \times \mathbb{Z}$.

Central class of nilpotent groups

The study of unitriangular representations of nilpotent groups comes from the classical theory of connected nilpotent Lie groups.

Theorem (Hall, Malcev)

Every finitely generated torsion-free nilpotent group G is a subgroup of some unitriangular matrix group $UT_n(\mathbb{Z})$, n = n(G). (Note that any finitely generated nilpotent group is a finite extension of a f.g. torsion-free nilpotent group.)

$$UT_n(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & a_{11} & a_{12} & \dots & a_{1n-1} \\ 0 & 1 & a_{21} & \dots & a_{2n-2} \\ \vdots & \ddots & \ddots & & \\ \vdots & & \ddots & \ddots & \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} \right\}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Central class of nilpotent groups

The study of unitriangular representations of nilpotent groups comes from the classical theory of connected nilpotent Lie groups.

Theorem (Hall, Malcev)

Every finitely generated torsion-free nilpotent group G is a subgroup of some unitriangular matrix group $UT_n(\mathbb{Z})$, n = n(G). (Note that any finitely generated nilpotent group is a finite extension of a f.g. torsion-free nilpotent group.)

$$UT_n(\mathbb{Z}) = \begin{cases} \begin{pmatrix} 1 & a_{11} & a_{12} & \dots & a_{1n-1} \\ 0 & 1 & a_{21} & \dots & a_{2n-2} \\ \vdots & \ddots & \ddots & & \\ \vdots & & \ddots & \ddots & \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} \end{cases}$$

(ロ) (型) (E) (E) (E) (O)

Central class of nilpotent groups

The study of unitriangular representations of nilpotent groups comes from the classical theory of connected nilpotent Lie groups.

Theorem (Hall, Malcev)

Every finitely generated torsion-free nilpotent group G is a subgroup of some unitriangular matrix group $UT_n(\mathbb{Z})$, n = n(G). (Note that any finitely generated nilpotent group is a finite extension of a f.g. torsion-free nilpotent group.)

$$UT_n(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & a_{11} & a_{12} & \dots & a_{1n-1} \\ 0 & 1 & a_{21} & \dots & a_{2n-2} \\ \vdots & \ddots & \ddots & & \\ \vdots & & \ddots & \ddots & & \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} \right\}$$

・ロト ・ ロ・ ・ ヨ・ ・ ヨ・ うらう

On the one hand $UT_3(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2:

 $1 \to \mathbb{Z} = Z(UT_3(\mathbb{Z})) \to UT_3(\mathbb{Z}) \to \mathbb{Z}^2 \to 1$

Theorem (Malcev)

Arithmetic is interpretable in $UT_3(\mathbb{Z})$. It follows that the elementary theory of $UT_3(\mathbb{Z})$ is undecidable.

Indeed, the center of $UT_3(\mathbb{Z})$ is $\mathbb{Z} = \{[a, b]^k \mid k \in \mathbb{Z}\}$:

- If $c_1, c_2 \in Z(UT_3(\mathbb{Z}))$, then $c_1 + c_2 = c_1 \cdot c_2$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z(UT_3(\mathbb{Z})), x' \in C(a), y' \in C(b)$ be so that [x', b] = x and [a, y'] = y, set $x \times y = [x', y']$.
- $0_{\mathbb{Z}}$ is 1 and $1_{\mathbb{Z}}$ is [a, b].

Theorem (Ershov, 72)

On the one hand $UT_3(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2:

 $1 \to \mathbb{Z} = Z(\mathit{UT}_3(\mathbb{Z})) \to \mathit{UT}_3(\mathbb{Z}) \to \mathbb{Z}^2 \to 1$

Theorem (Malcev)

Arithmetic is interpretable in $UT_3(\mathbb{Z})$. It follows that the elementary theory of $UT_3(\mathbb{Z})$ is undecidable.

Indeed, the center of $UT_3(\mathbb{Z})$ is $\mathbb{Z} = \{[a, b]^k \mid k \in \mathbb{Z}\}$:

- If $c_1, c_2 \in Z(UT_3(\mathbb{Z}))$, then $c_1 + c_2 = c_1 \cdot c_2$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z(UT_3(\mathbb{Z})), x' \in C(a), y' \in C(b)$ be so that [x', b] = x and [a, y'] = y, set $x \times y = [x', y']$.
- $0_{\mathbb{Z}}$ is 1 and $1_{\mathbb{Z}}$ is [a, b].

Theorem (Ershov, 72)

On the one hand $UT_3(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2:

 $1 \to \mathbb{Z} = Z(UT_3(\mathbb{Z})) \to UT_3(\mathbb{Z}) \to \mathbb{Z}^2 \to 1$

Theorem (Malcev)

Arithmetic is interpretable in $UT_3(\mathbb{Z})$. It follows that the elementary theory of $UT_3(\mathbb{Z})$ is undecidable.

Indeed, the center of $UT_3(\mathbb{Z})$ is $\mathbb{Z} = \{[a, b]^k \mid k \in \mathbb{Z}\}$:

- If $c_1, c_2 \in Z(UT_3(\mathbb{Z}))$, then $c_1 + c_2 = c_1 \cdot c_2$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z(UT_3(\mathbb{Z}))$, $x' \in C(a)$, $y' \in C(b)$ be so that [x', b] = x and [a, y'] = y, set $x \times y = [x', y']$.
- $0_{\mathbb{Z}}$ is 1 and $1_{\mathbb{Z}}$ is [a, b].

Theorem (Ershov, 72)

On the one hand $UT_3(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2:

 $1 \to \mathbb{Z} = Z(UT_3(\mathbb{Z})) \to UT_3(\mathbb{Z}) \to \mathbb{Z}^2 \to 1$

Theorem (Malcev)

Arithmetic is interpretable in $UT_3(\mathbb{Z})$. It follows that the elementary theory of $UT_3(\mathbb{Z})$ is undecidable.

Indeed, the center of $UT_3(\mathbb{Z})$ is $\mathbb{Z} = \{[a, b]^k \mid k \in \mathbb{Z}\}$:

- If $c_1, c_2 \in Z(UT_3(\mathbb{Z}))$, then $c_1 + c_2 = c_1 \cdot c_2$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z(UT_3(\mathbb{Z}))$, $x' \in C(a)$, $y' \in C(b)$ be so that [x', b] = x and [a, y'] = y, set $x \times y = [x', y']$.
- $0_{\mathbb{Z}}$ is 1 and $1_{\mathbb{Z}}$ is [a, b].

Theorem (Ershov, 72)

On the one hand $UT_3(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2:

 $1 \to \mathbb{Z} = Z(\mathit{UT}_3(\mathbb{Z})) \to \mathit{UT}_3(\mathbb{Z}) \to \mathbb{Z}^2 \to 1$

Theorem (Malcev)

Arithmetic is interpretable in $UT_3(\mathbb{Z})$. It follows that the elementary theory of $UT_3(\mathbb{Z})$ is undecidable.

Indeed, the center of $UT_3(\mathbb{Z})$ is $\mathbb{Z} = \{[a, b]^k \mid k \in \mathbb{Z}\}$:

- If $c_1, c_2 \in Z(UT_3(\mathbb{Z}))$, then $c_1 + c_2 = c_1 \cdot c_2$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z(UT_3(\mathbb{Z}))$, $x' \in C(a)$, $y' \in C(b)$ be so that [x', b] = x and [a, y'] = y, set $x \times y = [x', y']$.
- $0_{\mathbb{Z}}$ is 1 and $1_{\mathbb{Z}}$ is [a, b].

Theorem (Ershov, 72)

On the one hand $UT_3(\mathbb{Z})$ is unitriangular group, on the other hand it is the free nilpotent group of class 2 and rank 2:

 $1 \to \mathbb{Z} = Z(\mathit{UT}_3(\mathbb{Z})) \to \mathit{UT}_3(\mathbb{Z}) \to \mathbb{Z}^2 \to 1$

Theorem (Malcev)

Arithmetic is interpretable in $UT_3(\mathbb{Z})$. It follows that the elementary theory of $UT_3(\mathbb{Z})$ is undecidable.

Indeed, the center of $UT_3(\mathbb{Z})$ is $\mathbb{Z} = \{[a, b]^k \mid k \in \mathbb{Z}\}$:

- If $c_1, c_2 \in Z(UT_3(\mathbb{Z}))$, then $c_1 + c_2 = c_1 \cdot c_2$.
- Multiplication in \mathbb{Z} : Let $x, y \in Z(UT_3(\mathbb{Z})), x' \in C(a), y' \in C(b)$ be so that [x', b] = x and [a, y'] = y, set $x \times y = [x', y']$.
- $0_{\mathbb{Z}}$ is 1 and $1_{\mathbb{Z}}$ is [a, b].

Theorem (Ershov, 72)

Let *R* be a domain, $S \equiv R$. The set $UT_3(R)$ is a nilpotent group (neither torsion-free nor finitely generated). Its centre is *R*, the ring *R* is interpretable in $UT_3(R)$.

 $\begin{array}{lll} 1 \rightarrow R \rightarrow & UT_3(R) & \rightarrow R^2 \rightarrow 1 \\ 1 \rightarrow S \rightarrow & UT_3(S) & \rightarrow S^2 \rightarrow 1 \\ 1 \rightarrow R^* \rightarrow & UT_3(R)^* \simeq UT_3(R^*) & \rightarrow R^{2^*} \rightarrow 1 \end{array}$

Theorem (Belegradek, 92) $G \equiv UT_{3}(R) \text{ iff } G \simeq UT_{3}(S, f_{1}, f_{2}) \text{ and } S \equiv R.$ $UT_{3}(R) = \left\{ \begin{pmatrix} 1 & \alpha & \gamma \\ 0 & 0 & 1 \end{pmatrix} \right\}, \text{ with the multiplication:}$ $(\alpha, \beta, \gamma)(\alpha', \beta', \gamma') = (\alpha + \alpha', \beta + \beta', \gamma + \gamma' + \alpha\beta').$ Let $f_{1}, f_{2} : R^{+} \times R^{+} \to R$ be two symmetric 2-cocycles. New operation on $UT_{3}(R)$: $(\alpha, \beta, \gamma) \circ (\alpha', \beta', \gamma') = (\alpha + \alpha', \beta + \beta', \gamma + \gamma' + \alpha\beta' + f_{1}(\alpha, \alpha') + f_{2}(\beta, \beta', \gamma))$

Let *R* be a domain, $S \equiv R$. The set $UT_3(R)$ is a nilpotent group (neither torsion-free nor finitely generated). Its centre is *R*, the ring *R* is interpretable in $UT_3(R)$.

 $\begin{array}{lll} 1 \rightarrow R \rightarrow & UT_3(R) & \rightarrow R^2 \rightarrow 1 \\ 1 \rightarrow S \rightarrow & UT_3(S) & \rightarrow S^2 \rightarrow 1 \\ 1 \rightarrow R^* \rightarrow & UT_3(R)^* \simeq UT_3(R^*) & \rightarrow R^{2^*} \rightarrow 1 \end{array}$

Theorem (Belegradek, 92) $G \equiv UT_3(R)$ iff $G \simeq UT_3(S, f_1, f_2)$ and $S \equiv R$. $UT_3(R) = \left\{ \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & 0 \end{pmatrix} \right\}$, with the multiplication: $(\alpha, \beta, \gamma)(\alpha', \beta', \gamma') = (\alpha + \alpha', \beta + \beta', \gamma + \gamma' + \alpha\beta')$. Let $f_1, f_2 : R^+ \times R^+ \to R$ be two symmetric 2-cocycles. New operation on $UT_3(R)$:

< □ > < 部 > < 注 > < 注 > 注 の < で</p>

Let *R* be a domain, $S \equiv R$. The set $UT_3(R)$ is a nilpotent group (neither torsion-free nor finitely generated). Its centre is *R*, the ring *R* is interpretable in $UT_3(R)$.

$$\begin{array}{lll} 1 \to R \to & UT_3(R) & \to R^2 \to 1 \\ 1 \to S \to & UT_3(S) & \to S^2 \to 1 \\ 1 \to R^* \to & UT_3(R)^* \simeq UT_3(R^*) & \to R^{2^*} \to 1 \end{array}$$

Theorem (Belegradek, 92) $G \equiv UT_3(R) \text{ iff } G \simeq UT_3(S, f_1, f_2) \text{ and } S \equiv R.$ $UT_3(R) = \left\{ \begin{pmatrix} 1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix} \right\}$, with the multiplication: $(\alpha, \beta, \gamma)(\alpha', \beta', \gamma') = (\alpha + \alpha', \beta + \beta', \gamma + \gamma' + \alpha\beta').$ Let $f_1, f_2 : R^+ \times R^+ \to R$ be two symmetric 2-cocycles. New operation on $UT_3(R)$:

 $(\alpha,\beta,\gamma)\circ(\alpha',\beta',\gamma')=(\alpha+\alpha',\beta+\beta',\gamma+\gamma'+\alpha\beta'+f_1(\alpha,\alpha')+f_2(\beta,\beta')).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Groups elementarily equivalent to $UT_n(R)$ and to free nilpotent *R*-groups

 $\begin{array}{cccccccc} 1 \rightarrow & R & \rightarrow & UT_n(R) & \rightarrow & UT_n(R)/R = G & \rightarrow 1 \\ 1 \rightarrow & Z(G) \simeq R^k & \rightarrow & G & \rightarrow & G/Z(G) & \rightarrow 1 \end{array}$

Theorem (Belegradek, 92)

 $G \equiv UT_n(R)$ iff $G \simeq UT_n(S, f_1, f_2, ..., f_n)$ and $S \equiv R$. Here f_i 's are symmetric 2-cocycles $f_i : S^n \simeq UT_n(S)/UT_n(S)' \rightarrow S$.

Theorem (Miasnikov-Sohrabi, 2010, 2011) $G = F_{rac}(R)$ iff G is an abelian deformation of $F_{rac}(S)$

Abelian deformation = deformation of the operation on the group quotient by the commutator by the centre.

Our goal

Groups elementarily equivalent to $UT_n(R)$ and to free nilpotent *R*-groups

 $\begin{array}{ccccccccc} 1 \rightarrow & R & \rightarrow & UT_n(R) & \rightarrow & UT_n(R)/R = G & \rightarrow 1 \\ 1 \rightarrow & Z(G) \simeq R^k & \rightarrow & G & \rightarrow & G/Z(G) & \rightarrow 1 \end{array}$

Theorem (Belegradek, 92)

 $G \equiv UT_n(R)$ iff $G \simeq UT_n(S, f_1, f_2, ..., f_n)$ and $S \equiv R$. Here f_i 's are symmetric 2-cocycles $f_i : S^n \simeq UT_n(S)/UT_n(S)' \rightarrow S$.

Theorem (Miasnikov-Sohrabi, 2010, 2011)

 $G \equiv F_{n,c}(R)$ iff G is an abelian deformation of $F_{n,c}(S)$, $S \equiv R$. Abelian deformation = deformation of the operation on the grou

quotient by the commutator by the centre.

Our goal

Groups elementarily equivalent to $UT_n(R)$ and to free nilpotent *R*-groups

Theorem (Belegradek, 92)

 $G \equiv UT_n(R)$ iff $G \simeq UT_n(S, f_1, f_2, ..., f_n)$ and $S \equiv R$. Here f_i 's are symmetric 2-cocycles $f_i : S^n \simeq UT_n(S)/UT_n(S)' \rightarrow S$.

Theorem (Miasnikov-Sohrabi, 2010, 2011) $G \equiv F_{n,c}(R)$ iff G is an abelian deformation of $F_{n,c}(S)$, $S \equiv R$. Abelian deformation = deformation of the operation on the group quotient by the commutator by the centre.

Our goal

Groups elementarily equivalent to $UT_n(R)$ and to free nilpotent *R*-groups

Theorem (Belegradek, 92)

 $G \equiv UT_n(R)$ iff $G \simeq UT_n(S, f_1, f_2, ..., f_n)$ and $S \equiv R$. Here f_i 's are symmetric 2-cocycles $f_i : S^n \simeq UT_n(S)/UT_n(S)' \rightarrow S$.

Theorem (Miasnikov-Sohrabi, 2010, 2011)

 $G \equiv F_{n,c}(R)$ iff G is an abelian deformation of $F_{n,c}(S)$, $S \equiv R$.

Abelian deformation = deformation of the operation on the group quotient by the commutator by the centre.

Our goal

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R.

The chief difficulty lies in attempting to replace the rule r(x + y) = rx + ry (define an action of the ring).

- If N is a group which is complete and Hausdorff in its p-adic topology, then for any x ∈ N, the homomorphism of Z into N taking n to xⁿ extends naturally to a homomorphism of the groups Z_p of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.
- If K is any field of characteristic zero, then an exponent can be defined on UT_n(K):

$(1+x)^r = 1 + rx + C_r^2 x^2 + \dots$

 If K is the field of real numbers, then UT_n(K) is a nilpotent Lie group, and for any g ∈ UT_n(K), the set of elements of the form g^r defined in this way, is exactly the one-parameter subgroup generated by g.

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R. The chief difficulty lies in attempting to replace the rule r(x + y) = rx + ry (define an action of the ring).

- If N is a group which is complete and Hausdorff in its p-adic topology, then for any x ∈ N, the homomorphism of Z into N taking n to xⁿ extends naturally to a homomorphism of the groups Z_p of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.
- If K is any field of characteristic zero, then an exponent can be defined on UT_n(K):

$(1+x)^r = 1 + rx + C_r^2 x^2 + \dots$

If K is the field of real numbers, then UT_n(K) is a nilpotent Lie group, and for any g ∈ UT_n(K), the set of elements of the form g^r defined in this way, is exactly the one-parameter subgroup generated by g.

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R. The chief difficulty lies in attempting to replace the rule r(x + y) = rx + ry (define an action of the ring).

- If N is a group which is complete and Hausdorff in its p-adic topology, then for any x ∈ N, the homomorphism of Z into N taking n to xⁿ extends naturally to a homomorphism of the groups Z_p of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.
- If K is any field of characteristic zero, then an exponent can be defined on UT_n(K):

$(1+x)^r = 1 + rx + C_r^2 x^2 + \dots$

(a) If K is the field of real numbers, then $UT_n(K)$ is a nilpotent Lie group, and for any $g \in UT_n(K)$, the set of elements of the form g^r defined in this way, is exactly the one-parameter subgroup generated by g.

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R. The chief difficulty lies in attempting to replace the rule r(x + y) = rx + ry (define an action of the ring).

If N is a group which is complete and Hausdorff in its p-adic topology, then for any x ∈ N, the homomorphism of Z into N taking n to xⁿ extends naturally to a homomorphism of the groups Z_p of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.

If K is any field of characteristic zero, then an exponent can be defined on UT_n(K):

$$(1+x)^r = 1 + rx + C_r^2 x^2 + \dots$$

If K is the field of real numbers, then UT_n(K) is a nilpotent Lie group, and for any g ∈ UT_n(K), the set of elements of the form g' defined in this way, is exactly the one-parameter subgroup generated by g.

Let *R* be an associative domain. The ring *R* gives rise to the category of *R*-groups. Enrich the language \mathcal{L} with new unary operations $f_r(x)$, one for any $r \in R$. For $g \in G$ and $\alpha \in R$ denote $f_{\alpha}(g) = g^{\alpha}$.

Definition

An structure G of the language $\mathcal{L}(R)$ is an R-group if:

G is a group;
 g⁰ = 1, g^{α+β} = g^αg^β, g^{αβ} = (g^α)^β.

As the class of R-groups is a variety, so one has R-subgroups, R-homomorphisms, free R-groups, nilpotent R-groups etc.

Hall *R*-groups

Definition

Let *R* be a *binomial* ring. A nilpotent group *G* of a class *m* is called a Hall *R*-group if for all $x, y, x_1, \ldots, x_n \in G$ and any $\lambda, \mu \in R$ one has:

- G is a nilpotent R-group of class m;
- $(y^{-1}xy)^{\lambda} = (y^{-1}xy)^{\lambda};$
- $x_1^{\lambda} \cdots x_n^{\lambda} = (x_1 \cdots x_n)^{\lambda} \tau_2(x)^{C_2^{\lambda}} \cdots \tau_m(x)^{C_m^{\lambda}}$, where $\tau_i(x) \in \Gamma_{i-1}(F(x))$ is the *i*-th Petrescu word defined in the free group F(x) by

$$x_1^i \cdots x_n^i = \tau_1(x)^{C_1^i} \tau_2(x)^{C_2^i} \cdots \tau_i(x)^{C_i^i}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Hall *R*-groups

Proposition (Hall)

Let *R* be a binomial ring. Then the unitriangular group $UT_n(R)$ and, therefore, all its *R*-subgroups are Hall *R*-groups.

Theorem (Merzlyakov 68, Warfield, 76)

A finitely generated, torsion-free R-group is isomorphic to an R-subgroup of $UT_n(R)$, for some positive integer n, if R is a PID, binomial ring.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (Belegradek, 92) $G \equiv UT_3(R)$ iff $G \simeq UT_3(S, f_1, f_2)$ and $S \equiv R$.

$$\begin{array}{cccc} 1 \rightarrow R = Z(UT_3(R)) \rightarrow & UT_3(R) & \rightarrow R^2 = UT_3(R)/R \rightarrow 1 \\ 1 \rightarrow S \rightarrow & G & \rightarrow S^2 \rightarrow 1 \\ 1 \rightarrow R^* \rightarrow & UT_3(R)^* & \rightarrow R^{2^*} \rightarrow 1 \end{array}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

It is important that G is not an R-group!

Malcev (1949) proved that there is a category isomorphism between the category of torsion-free nilpotent \mathbb{Q} -groups and the category of nilpotent finite-dimensional rational Lie algebras (the isomorphism is given by the Baker-Campbell-Hausdorff formula).

Let G be t.f. nilpotent. Define Lie(G) as follows:

- $Lie(G) = \bigoplus_{i=1}^{\infty} \Gamma_i / \Gamma_{i+1}$, as an abelian group;
- Let $x = \sum_{i=1}^{\infty} x_i \Gamma_{i+1}$ and $y = \sum_{i=1}^{\infty} y_i \Gamma_{i+1}$, where $x_i, y_i \in \Gamma_i$ are elements of Lie(G). Define a product \circ on Lie(G) by

$$x \circ y = \sum_{k=2}^{\infty} \sum_{i+j=2}^{k} [x_i, y_j] \Gamma_{i+j+1}.$$

Since Γ_i are definable in G, understanding groups \equiv to G is closely related to understanding rings \equiv to Lie(G). If we are to understand groups \equiv to an R-group G, we should understand rings \equiv to the Lie R-algebra Lie(G).

(日) (伊) (日) (日) (日) (0) (0)

Malcev (1949) proved that there is a category isomorphism between the category of torsion-free nilpotent \mathbb{Q} -groups and the category of nilpotent finite-dimensional rational Lie algebras (the isomorphism is given by the Baker-Campbell-Hausdorff formula).

Let G be t.f. nilpotent. Define Lie(G) as follows:

- $Lie(G) = \bigoplus_{i=1}^{\infty} \Gamma_i / \Gamma_{i+1}$, as an abelian group;
- Let $x = \sum_{i=1}^{\infty} x_i \Gamma_{i+1}$ and $y = \sum_{i=1}^{\infty} y_i \Gamma_{i+1}$, where $x_i, y_i \in \Gamma_i$ are elements of Lie(G). Define a product \circ on Lie(G) by

$$x \circ y = \sum_{k=2}^{\infty} \sum_{i+j=2}^{k} [x_i, y_j] \Gamma_{i+j+1}.$$

Since Γ_i are definable in G, understanding groups \equiv to G is closely related to understanding rings \equiv to Lie(G). If we are to understand groups \equiv to an R-group G, we should understand rings \equiv to the Lie R-algebra Lie(G).

(日) (伊) (日) (日) (日) (0) (0)

Malcev (1949) proved that there is a category isomorphism between the category of torsion-free nilpotent \mathbb{Q} -groups and the category of nilpotent finite-dimensional rational Lie algebras (the isomorphism is given by the Baker-Campbell-Hausdorff formula).

Let G be t.f. nilpotent. Define Lie(G) as follows:

- $Lie(G) = \bigoplus_{i=1}^{\infty} \Gamma_i / \Gamma_{i+1}$, as an abelian group;
- Let $x = \sum_{i=1}^{\infty} x_i \Gamma_{i+1}$ and $y = \sum_{i=1}^{\infty} y_i \Gamma_{i+1}$, where $x_i, y_i \in \Gamma_i$ are elements of Lie(G). Define a product \circ on Lie(G) by

$$x \circ y = \sum_{k=2}^{\infty} \sum_{i+j=2}^{k} [x_i, y_j] \Gamma_{i+j+1}.$$

Since Γ_i are definable in G, understanding groups \equiv to G is closely related to understanding rings \equiv to Lie(G).

If we are to understand groups \equiv to an *R*-group *G*, we should understand rings \equiv to the Lie *R*-algebra *Lie*(*G*).

Malcev (1949) proved that there is a category isomorphism between the category of torsion-free nilpotent \mathbb{Q} -groups and the category of nilpotent finite-dimensional rational Lie algebras (the isomorphism is given by the Baker-Campbell-Hausdorff formula).

Let G be t.f. nilpotent. Define Lie(G) as follows:

- $Lie(G) = \bigoplus_{i=1}^{\infty} \Gamma_i / \Gamma_{i+1}$, as an abelian group;
- Let $x = \sum_{i=1}^{\infty} x_i \Gamma_{i+1}$ and $y = \sum_{i=1}^{\infty} y_i \Gamma_{i+1}$, where $x_i, y_i \in \Gamma_i$ are elements of Lie(G). Define a product \circ on Lie(G) by

$$x \circ y = \sum_{k=2}^{\infty} \sum_{i+j=2}^{k} [x_i, y_j] \Gamma_{i+j+1}.$$

Since Γ_i are definable in G, understanding groups \equiv to G is closely related to understanding rings \equiv to Lie(G). If we are to understand groups \equiv to an R-group G, we should understand rings \equiv to the Lie R-algebra Lie(G).

Idea of Miasnikov (late 1980's)

- With an *R*-algebra *A*, associate a nice bilinear map $f_A : A/Ann(A) \times A/Ann(A) \rightarrow A^2$.
- ② A ring $S = S(f_A) = S(R) ⊇ R$, and the S-modules A^2 and A/Ann(A) are interpretable in A in the language of rings.

 $f_A: \begin{array}{ccc} A / Ann(A) & \times & A / Ann(A) & \rightarrow & A^2 \\ (x + Ann(A) & , & y + Ann(A)) & \mapsto & x \cdot y. \end{array}$

- Consider a 2-sorted model U_f = (A/Ann(A), A², p_f), where p_f is a predicate which describes the map f_A, and M = A/Ann(A), N = A² are viewed as abelian groups.
- Associate to f_A a 3-sorted model $UR_f = (M, N, S, p_f, s_M, s_N)$, where M, N and p_f are as above, S = S(A) is a certain ring containing R, and s_M, s_N are predicates describing the action of S.
- It is clear that U_f is interpretable in UR_f . A theorem of Miasnikov states that (under some conditions on A) the converse is also true!

Example

- If A = R, then S = R.
- If $A = R \times R$, then $S = R \times R$.
- If A is a free nilpotent (Lie or associative) algebra, then S = R.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Consider a 2-sorted model U_f = (A/Ann(A), A², p_f), where p_f is a predicate which describes the map f_A, and M = A/Ann(A), N = A² are viewed as abelian groups.
- Associate to f_A a 3-sorted model $UR_f = (M, N, S, p_f, s_M, s_N)$, where M, N and p_f are as above, S = S(A) is a certain ring containing R, and s_M, s_N are predicates describing the action of S.
- It is clear that U_f is interpretable in UR_f . A theorem of Miasnikov states that (under some conditions on A) the converse is also true!

Example

- If A = R, then S = R.
- If $A = R \times R$, then $S = R \times R$.
- If A is a free nilpotent (Lie or associative) algebra, then S = R.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

- Consider a 2-sorted model U_f = (A/Ann(A), A², p_f), where p_f is a predicate which describes the map f_A, and M = A/Ann(A), N = A² are viewed as abelian groups.
- Associate to f_A a 3-sorted model $UR_f = (M, N, S, p_f, s_M, s_N)$, where M, N and p_f are as above, S = S(A) is a certain ring containing R, and s_M, s_N are predicates describing the action of S.
- It is clear that U_f is interpretable in UR_f . A theorem of Miasnikov states that (under some conditions on A) the converse is also true!

Example

- If A = R, then S = R.
- If $A = R \times R$, then $S = R \times R$.
- If A is a free nilpotent (Lie or associative) algebra, then S = R.

ション ふゆ く 山 マ チャット しょうくしゃ

- Consider a 2-sorted model U_f = (A/Ann(A), A², p_f), where p_f is a predicate which describes the map f_A, and M = A/Ann(A), N = A² are viewed as abelian groups.
- Associate to f_A a 3-sorted model $UR_f = (M, N, S, p_f, s_M, s_N)$, where M, N and p_f are as above, S = S(A) is a certain ring containing R, and s_M, s_N are predicates describing the action of S.
- It is clear that U_f is interpretable in UR_f . A theorem of Miasnikov states that (under some conditions on A) the converse is also true!

Example

- If A = R, then S = R.
- If $A = R \times R$, then $S = R \times R$.
- If A is a free nilpotent (Lie or associative) algebra, then S = R.

ション ふゆ く 山 マ チャット しょうくしゃ

- Consider a 2-sorted model U_f = (A/Ann(A), A², p_f), where p_f is a predicate which describes the map f_A, and M = A/Ann(A), N = A² are viewed as abelian groups.
- Associate to f_A a 3-sorted model $UR_f = (M, N, S, p_f, s_M, s_N)$, where M, N and p_f are as above, S = S(A) is a certain ring containing R, and s_M, s_N are predicates describing the action of S.
- It is clear that U_f is interpretable in UR_f . A theorem of Miasnikov states that (under some conditions on A) the converse is also true!

Example

- If A = R, then S = R.
- If $A = R \times R$, then $S = R \times R$.
- If A is a free nilpotent (Lie or associative) algebra, then S = R.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

$U_f = (A/Ann(A), A^2, p_f) \qquad UR_f = (M, N, S, p_f, s_M, s_N)$

- Let μ : R → P be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
 - Addition is the same in *R*-module and *P*-module cases.
 - (a) And $rm = \mu(r)m$, for every $r \in R$ and $m \in M$.
- An *enrichment E* of *f* is a pair of enrichments of *M* and *N* such that the map *f* is *P*-bilinear for the *P*-modules.
- E₁ ≤ E₂ if there exists P₁ → P₂ such that the P₂-enrichments of M and N are P₂-enrichments of the P₁-enrichments of M and N.

- 「 (西) (西) (西) (日)

• There exists a maximal enrichment E_M of f, and S = P(f) the ring of E_M .

 $U_f = (A/Ann(A), A^2, p_f) \qquad UR_f = (M, N, S, p_f, s_M, s_N)$

- Let μ : R → P be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
 - Addition is the same in *R*-module and *P*-module cases.
 - 2 And $rm = \mu(r)m$, for every $r \in R$ and $m \in M$.
- An *enrichment E* of *f* is a pair of enrichments of *M* and *N* such that the map *f* is *P*-bilinear for the *P*-modules.
- E₁ ≤ E₂ if there exists P₁ → P₂ such that the P₂-enrichments of M and N are P₂-enrichments of the P₁-enrichments of M and N.
- There exists a maximal enrichment E_M of f, and S = P(f) the ring of E_M .

 $U_f = (A/Ann(A), A^2, p_f) \qquad UR_f = (M, N, S, p_f, s_M, s_N)$

- Let μ : R → P be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
 - Addition is the same in *R*-module and *P*-module cases.

2 And $rm = \mu(r)m$, for every $r \in R$ and $m \in M$.

- An *enrichment E* of *f* is a pair of enrichments of *M* and *N* such that the map *f* is *P*-bilinear for the *P*-modules.
- E₁ ≤ E₂ if there exists P₁ → P₂ such that the P₂-enrichments of M and N are P₂-enrichments of the P₁-enrichments of M and N.
- There exists a maximal enrichment E_M of f, and S = P(f) the ring of E_M .

 $U_f = (A/Ann(A), A^2, p_f) \qquad UR_f = (M, N, S, p_f, s_M, s_N)$

- Let μ : R → P be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
 - Addition is the same in *R*-module and *P*-module cases.

2 And $rm = \mu(r)m$, for every $r \in R$ and $m \in M$.

- An *enrichment E* of *f* is a pair of enrichments of *M* and *N* such that the map *f* is *P*-bilinear for the *P*-modules.
- E₁ ≤ E₂ if there exists P₁ → P₂ such that the P₂-enrichments of M and N are P₂-enrichments of the P₁-enrichments of M and N.

• There exists a maximal enrichment E_M of f, and S = P(f) the ring of E_M .

 $U_f = (A/Ann(A), A^2, p_f) \qquad UR_f = (M, N, S, p_f, s_M, s_N)$

- Let μ : R → P be an inclusion of rings. A P-module structure on M is an enrichment (wrt μ) if:
 - Addition is the same in *R*-module and *P*-module cases.

2 And $rm = \mu(r)m$, for every $r \in R$ and $m \in M$.

- An *enrichment E* of *f* is a pair of enrichments of *M* and *N* such that the map *f* is *P*-bilinear for the *P*-modules.
- E₁ ≤ E₂ if there exists P₁ → P₂ such that the P₂-enrichments of M and N are P₂-enrichments of the P₁-enrichments of M and N.

• There exists a maximal enrichment E_M of f, and S = P(f) the ring of E_M .

Well-structured algebras

An algebra scheme $\mathcal{A}(n, \alpha)$, where $n \in \mathbb{N}$, $\alpha = (\alpha_k^{i,j})_{a \leq i,j,k \leq n} \in \mathbb{Z}^{n^3}$ is a family of algebras that satisfy the following conditions:

- A(R) ∈ A(n, α) is an R-algebra, where R is a domain of characteristic 0;
- the underlying module of the algebra A(R) is a free R-module of rank n;
- there is a basis v_1, \ldots, v_n of the module of the algebra A(R) with structural constants α , i.e.

$$\mathbf{v}_i \mathbf{v}_j = \sum_{k=1,\dots,n} \alpha_k^{i,j} \mathbf{v}_k$$

for all $i, j \in \{1, \ldots, n\}$.

An algebra $A(R) \in A_{n,\alpha}$ is well-structured if: (WS1) $Ann(A(R)) \subseteq A(R)^2$. (WS2) $A(R)/A(R)^2$ is a free *R*-module. (WS3) $R = P(f_{A(R)}) = S$ is an isomorphism.

Well-structured algebras

An algebra scheme $\mathcal{A}(n, \alpha)$, where $n \in \mathbb{N}$, $\alpha = (\alpha_k^{i,j})_{a \leq i,j,k \leq n} \in \mathbb{Z}^{n^3}$ is a family of algebras that satisfy the following conditions:

- A(R) ∈ A(n, α) is an R-algebra, where R is a domain of characteristic 0;
- the underlying module of the algebra A(R) is a free R-module of rank n;
- there is a basis v_1, \ldots, v_n of the module of the algebra A(R) with structural constants α , i.e.

$$\mathbf{v}_i \mathbf{v}_j = \sum_{k=1,\dots,n} \alpha_k^{i,j} \mathbf{v}_k$$

for all $i, j \in \{1, ..., n\}$.

An algebra $A(R) \in A_{n,\alpha}$ is well-structured if: (WS1) $Ann(A(R)) \subseteq A(R)^2$. (WS2) $A(R)/A(R)^2$ is a free *R*-module. (WS3) $R = P(f_{A(R)}) = S$ is an isomorphism.

Abelian deformations and characterisation theorem for algebras

 $U_f = (A/Ann(A), A^2, p_f) \qquad UR_f = (M, N, S, p_f, s_M, s_N)$

Theorem

Let A(R) be a well-structured R-algebra and B be a ring. Then

 $B \equiv A$ if and only if $B \simeq QA(T, c)$

for some ring $T \equiv R$ and some symmetric 2-cocycle $c \in S^2(QA/QA^2, Ann(QA))$. That is B is an abelian deformation of A(T).

 $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3 + c(x_1, y_1)),$

where $x_1, y_1 \in A/A^2$, $x_2, y_2 \in A^2/Ann(A)$ and $x_3, y_3 \in Ann(A)$.

Note that if *R* is a field or a local ring deformations disappear.

Abelian deformations and characterisation theorem for algebras

 $U_f = (A/Ann(A), A^2, p_f) \qquad UR_f = (M, N, S, p_f, s_M, s_N)$

Theorem

Let A(R) be a well-structured R-algebra and B be a ring. Then

 $B \equiv A$ if and only if $B \simeq QA(T, c)$

for some ring $T \equiv R$ and some symmetric 2-cocycle $c \in S^2(QA/QA^2, Ann(QA))$. That is B is an abelian deformation of A(T).

 $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3 + c(x_1, y_1)),$

(日) (伊) (日) (日) (日) (0) (0)

where $x_1, y_1 \in A/A^2$, $x_2, y_2 \in A^2/Ann(A)$ and $x_3, y_3 \in Ann(A)$.

Note that if *R* is a field or a local ring deformations disappear.

Abelian deformations and characterisation theorem for algebras

 $U_f = (A/Ann(A), A^2, p_f) \qquad UR_f = (M, N, S, p_f, s_M, s_N)$

Theorem

Let A(R) be a well-structured R-algebra and B be a ring. Then

 $B \equiv A$ if and only if $B \simeq QA(T, c)$

for some ring $T \equiv R$ and some symmetric 2-cocycle $c \in S^2(QA/QA^2, Ann(QA))$. That is B is an abelian deformation of A(T).

 $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3 + c(x_1, y_1)),$

where $x_1, y_1 \in A/A^2$, $x_2, y_2 \in A^2/Ann(A)$ and $x_3, y_3 \in Ann(A)$. Note that if R is a field or a local ring deformations disappear. Theorem (Belegradek; Miasnikov-Sohrabi; CFKR)

Let R be an integral domain of characteristic zero. And let G be one of the following groups:

- *UT_n*;
- free nilpotent group;

• directly indecomposable partially commutative nilpotent group. Then Lie_R(G) is well-structured.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Characterisation theorem for groups

Theorem (CFKR)

Let G be a Hall R-group so that

- lower and upper central series of G coincide;
- Lie(G) is well-structured.

Let H be a group, $H \equiv G$. Then H is QG(S) over some ring S such that $S \equiv R$ as rings.

Corollary (Belegradek; Miasnikov-Sohrabi; CFKR)

Let R be a binomial ring. And let G be one of the following groups:

- $UT_n(R)$;
- free nilpotent *R*-group;
- directly indecomposable partially commutative nilpotent *R*-group.

Let *H* be a group elementarily equivalent to *G*. Then *H* is QG(S) over some ring *S* such that $S \equiv R$ as rings.

Characterisation theorem for groups

Theorem (CFKR)

Let G be a Hall R-group so that

- lower and upper central series of G coincide;
- Lie(G) is well-structured.

Let H be a group, $H \equiv G$. Then H is QG(S) over some ring S such that $S \equiv R$ as rings.

Corollary (Belegradek; Miasnikov-Sohrabi; CFKR)

Let R be a binomial ring. And let G be one of the following groups:

- $UT_n(R)$;
- free nilpotent *R*-group;
- directly indecomposable partially commutative nilpotent *R*-group.

Let *H* be a group elementarily equivalent to *G*. Then *H* is QG(S) over some ring *S* such that $S \equiv R$ as rings.

THANK YOU!