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Elementary equivalence

The elementary theory Th(G ) of a group is the set of all sentences
which hold in G . Two groups G and H are called elementarily
equivalent if Th(G ) = Th(H).

ALGEBRA
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!
MODEL THEORY

ELEMENTARY EQUIVALENCE

Problem
Classify groups (in a given class) up to elementary equivalence.



Map of Groups

Curvature and complexity for finitely presented groups 3

not another, and one starts to wonder how such problems might be transported
to a more hospitable region of the universe where one has stricter definitions and
better theorems to mount an attack.
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Figure 1. The universe of finitely presented groups.

When approaching group theory from the viewpoint of large-scale geometry,
it is natural to blur the distinction between commensurable groups. Thus our
universe begins with a single (large and interesting) point labelled 1 representing
the finite groups. The simplest infinite group is surely Z, so we have a second point
representing the virtually cyclic groups. Here the universe divides. If one wants to
retain the safety of commutativity and amenability, one can proceed from Z to the
virtually abelian groups. As one slowly relinquishes commutativity and control over
growth and constructability, one passes through the progressively larger classes of
(virtually-) nilpotent, polycyclic, solvable and elementary amenable groups, which
are marked in the region bounded by a thick line enclosing the amenable groups.

Thinking more freely, instead of taking direct products one might proceed from
Z by taking free products, moving into the class F of virtually free2 groups, with

2F contains only one commensurability class besides Z, but is drawn larger for effect



Abelian Groups
Let A be a torsion-free (without elements of finite order) abelian
group

Set αp(A) =

{
dimA/pA, if finite;
∞, otherwise.

Szmielew characteristic of A is χ(A) = (α2(A), α3(A), α5(A), . . . ).

Theorem (A, B - torsion free)
Th(A) = Th(B) ⇔ χ(A) = χ(B).

Corollary

1 A - torsion-free, C - divisible, then Th(A) = Th(A⊕ C ).
2 All t.f. divisible abelian groups are elementarily equivalent.
3 Two f.g. abelian groups are elementarily equivalent iff they are

isomorphic.

Classification of abelian groups up
to isomorphism is hopeless.

Elegant classification up to
elementary equivalence.
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Nilpotent groups

A group G is called nilpotent if the lower central series:

Γ0(G ) = G , Γi+1(G ) = [Γi (G ),G ]

is eventually trivial. The minimal i so that Γi (G ) = 1 is called the
nilpotency class of G .
Equivalently, a group G is nilpotent of class c if

G |= ∀x0, . . . xc [[. . . [x0, x1], . . . , xc−1], xc ] = 1.

Note that the class of nilpotent groups is a variety.
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Nilpotent groups

Szmielew: Two finitely generated
abelian groups are elementarily
equivalent iff they are isomorphic.

Kargapolov: Two finitely generated
nilpotent groups are elementarily
equivalent iff they are isomorphic?

Theorem (Zilber, 71)
There are non-isomorphic, but elementarily equivalent finitely
generated nilpotent groups of class 2.

Theorem (Oger, 91)
Two f.g. nilpotent groups G and H are elementarily equivalent iff
G × Z ' H × Z.
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Central class of nilpotent groups

The study of unitriangular representations of nilpotent groups
comes from the classical theory of connected nilpotent Lie groups.

Theorem (Hall, Malcev)
Every finitely generated torsion-free nilpotent group G is a
subgroup of some unitriangular matrix group UTn(Z), n = n(G ).
(Note that any finitely generated nilpotent group is a finite
extension of a f.g. torsion-free nilpotent group.)

UTn(Z) =




1 a11 a12 . . . a1n−1
0 1 a21 . . . a2n−2
...

. . . . . .
...

. . . . . .
0 . . . . . . 0 1




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Nilpotent groups: role of UT3(Z)
On the one hand UT3(Z) is unitriangular group, on the other hand
it is the free nilpotent group of class 2 and rank 2:

1→ Z = Z (UT3(Z))→ UT3(Z)→ Z2 → 1

Theorem (Malcev)
Arithmetic is interpretable in UT3(Z). It follows that the
elementary theory of UT3(Z) is undecidable.
Indeed, the center of UT3(Z) is Z = {[a, b]k | k ∈ Z}:

If c1, c2 ∈ Z (UT3(Z)), then c1 + c2 = c1 · c2.
Multiplication in Z: Let x , y ∈ Z (UT3(Z)), x ′ ∈ C (a),
y ′ ∈ C (b) be so that [x ′, b] = x and [a, y ′] = y , set
x × y = [x ′, y ′].
0Z is 1 and 1Z is [a, b].

Theorem (Ershov, 72)
The group UT3(Z) is interpretable in any f.g. nilpotent group
which is not virtually abelian.
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Groups elementarily equivalent to UT3(R)
Let R be a domain, S ≡ R . The set UT3(R) is a nilpotent group
(neither torsion-free nor finitely generated). Its centre is R , the ring
R is interpretable in UT3(R).

1→ R → UT3(R) → R2 → 1
1→ S → UT3(S) → S2 → 1
1→ R∗ → UT3(R)∗ ' UT3(R∗) → R2∗ → 1

Theorem (Belegradek, 92)
G ≡ UT3(R) iff G ' UT3(S , f1, f2) and S ≡ R .

UT3(R) =
{(1 α γ

0 1 β
0 0 1

)}
, with the multiplication:

(α, β, γ)(α′, β′, γ′) = (α + α′, β + β′, γ + γ′ + αβ′).

Let f1, f2 : R+ × R+ → R be two symmetric 2-cocycles. New
operation on UT3(R):

(α, β, γ)◦(α′, β′, γ′) = (α+α′, β+β′, γ+γ′+αβ′+f1(α, α′)+f2(β, β′)).
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Groups elementarily equivalent to UTn(R) and to
free nilpotent R-groups

1→ R → UTn(R) → UTn(R)/R = G → 1
1→ Z (G ) ' Rk → G → G/Z (G ) → 1

Theorem (Belegradek, 92)
G ≡ UTn(R) iff G ' UTn(S , f1, f2, . . . , fn) and S ≡ R . Here fi ’s
are symmetric 2-cocycles fi : Sn ' UTn(S)/UTn(S)′ → S .

Theorem (Miasnikov-Sohrabi, 2010, 2011)
G ≡ Fn,c(R) iff G is an abelian deformation of Fn,c(S), S ≡ R .
Abelian deformation = deformation of the operation on the group
quotient by the commutator by the centre.

Our goal
Find a general approach for both of the above results that can be
used in more general settings.
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Nilpotent groups and R-groups
When considering non-commutative groups, it is natural to attempt
to extend the idea of a module to the noncommutative case - a
group admitting exponents in some ring R .
The chief difficulty lies in attempting to replace the rule
r(x + y) = rx + ry (define an action of the ring).

1 If N is a group which is complete and Hausdorff in its p-adic
topology, then for any x ∈ N, the homomorphism of Z into N
taking n to xn extends naturally to a homomorphism of the
groups Zp of p-adic integers into N. We make N into a group
admitting exponents in the ring of p-adic integers.

2 If K is any field of characteristic zero, then an exponent can
be defined on UTn(K ):

(1 + x)r = 1 + rx + C 2
r x

2 + . . .

3 If K is the field of real numbers, then UTn(K ) is a nilpotent
Lie group, and for any g ∈ UTn(K ), the set of elements of the
form g r defined in this way, is exactly the one-parameter
subgroup generated by g .



Nilpotent groups and R-groups
When considering non-commutative groups, it is natural to attempt
to extend the idea of a module to the noncommutative case - a
group admitting exponents in some ring R .
The chief difficulty lies in attempting to replace the rule
r(x + y) = rx + ry (define an action of the ring).

1 If N is a group which is complete and Hausdorff in its p-adic
topology, then for any x ∈ N, the homomorphism of Z into N
taking n to xn extends naturally to a homomorphism of the
groups Zp of p-adic integers into N. We make N into a group
admitting exponents in the ring of p-adic integers.

2 If K is any field of characteristic zero, then an exponent can
be defined on UTn(K ):

(1 + x)r = 1 + rx + C 2
r x

2 + . . .

3 If K is the field of real numbers, then UTn(K ) is a nilpotent
Lie group, and for any g ∈ UTn(K ), the set of elements of the
form g r defined in this way, is exactly the one-parameter
subgroup generated by g .



Nilpotent groups and R-groups
When considering non-commutative groups, it is natural to attempt
to extend the idea of a module to the noncommutative case - a
group admitting exponents in some ring R .
The chief difficulty lies in attempting to replace the rule
r(x + y) = rx + ry (define an action of the ring).

1 If N is a group which is complete and Hausdorff in its p-adic
topology, then for any x ∈ N, the homomorphism of Z into N
taking n to xn extends naturally to a homomorphism of the
groups Zp of p-adic integers into N. We make N into a group
admitting exponents in the ring of p-adic integers.

2 If K is any field of characteristic zero, then an exponent can
be defined on UTn(K ):

(1 + x)r = 1 + rx + C 2
r x

2 + . . .

3 If K is the field of real numbers, then UTn(K ) is a nilpotent
Lie group, and for any g ∈ UTn(K ), the set of elements of the
form g r defined in this way, is exactly the one-parameter
subgroup generated by g .



Nilpotent groups and R-groups
When considering non-commutative groups, it is natural to attempt
to extend the idea of a module to the noncommutative case - a
group admitting exponents in some ring R .
The chief difficulty lies in attempting to replace the rule
r(x + y) = rx + ry (define an action of the ring).

1 If N is a group which is complete and Hausdorff in its p-adic
topology, then for any x ∈ N, the homomorphism of Z into N
taking n to xn extends naturally to a homomorphism of the
groups Zp of p-adic integers into N. We make N into a group
admitting exponents in the ring of p-adic integers.

2 If K is any field of characteristic zero, then an exponent can
be defined on UTn(K ):

(1 + x)r = 1 + rx + C 2
r x

2 + . . .

3 If K is the field of real numbers, then UTn(K ) is a nilpotent
Lie group, and for any g ∈ UTn(K ), the set of elements of the
form g r defined in this way, is exactly the one-parameter
subgroup generated by g .



Nilpotent groups and R-groups

Let R be an associative domain. The ring R gives rise to the
category of R-groups. Enrich the language L with new unary
operations fr (x), one for any r ∈ R . For g ∈ G and α ∈ R denote
fα(g) = gα.

Definition
An structure G of the language L(R) is an R-group if:

G is a group;
g0 = 1, gα+β = gαgβ, gαβ = (gα)β .

As the class of R-groups is a variety, so one has R-subgroups,
R-homomorphisms, free R-groups, nilpotent R-groups etc.



Hall R-groups

Definition
Let R be a binomial ring. A nilpotent group G of a class m is
called a Hall R-group if for all x , y , x1, . . . , xn ∈ G and any
λ, µ ∈ R one has:

G is a nilpotent R-group of class m;
(y−1xy)λ = (y−1xy)λ;
xλ1 · · · xλn = (x1 · · · xn)λτ2(x)C

λ
2 · · · τm(x)C

λ
m , where

τi (x) ∈ Γi−1(F (x)) is the i-th Petrescu word defined in the
free group F (x) by

x i1 · · · x in = τ1(x)C
i
1τ2(x)C

i
2 · · · τi (x)C

i
i .



Hall R-groups

Proposition (Hall)
Let R be a binomial ring. Then the unitriangular group UTn(R)
and, therefore, all its R-subgroups are Hall R-groups.

Theorem (Merzlyakov 68, Warfield, 76)
A finitely generated, torsion-free R-group is isomorphic to an
R-subgroup of UTn(R), for some positive integer n, if R is a PID,
binomial ring.



Groups elementarily equivalent to UT3(R)

Theorem (Belegradek, 92)
G ≡ UT3(R) iff G ' UT3(S , f1, f2) and S ≡ R .

1→ R = Z (UT3(R))→ UT3(R) → R2 = UT3(R)/R → 1
1→ S → G → S2 → 1
1→ R∗ → UT3(R)∗ → R2∗ → 1

It is important that G is not an R-group!



Lie ring/algebra of a nilpotent group

Malcev (1949) proved that there is a category isomorphism between
the category of torsion-free nilpotent Q-groups and the category of
nilpotent finite-dimensional rational Lie algebras (the isomorphism
is given by the Baker-Campbell-Hausdorff formula).

Let G be t.f. nilpotent. Define Lie(G ) as follows:
Lie(G ) = ⊕∞i=1Γi/Γi+1, as an abelian group;
Let x =

∑∞
i=1 xiΓi+1 and y =

∑∞
i=1 yiΓi+1, where xi , yi ∈ Γi

are elements of Lie(G ). Define a product ◦ on Lie(G ) by

x ◦ y =
∞∑
k=2

k∑
i+j=2

[xi , yj ]Γi+j+1.

Since Γi are definable in G , understanding groups ≡ to G is closely
related to understanding rings ≡ to Lie(G ).
If we are to understand groups ≡ to an R-group G , we should
understand rings ≡ to the Lie R-algebra Lie(G ).
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Idea of Miasnikov (late 1980’s)

1 With an R-algebra A, associate a nice bilinear map
fA : A/Ann(A)× A/Ann(A)→ A2.

2 A ring S = S(fA) = S(R) ⊇ R , and the S-modules A2 and
A/Ann(A) are interpretable in A in the language of rings.

fA:
A/Ann(A) × A/Ann(A) → A2

(x + Ann(A) , y + Ann(A)) 7→ x · y .



Model theory of bilinear maps
Consider a 2-sorted model Uf = (A/Ann(A),A2, pf ), where pf
is a predicate which describes the map fA, and
M = A/Ann(A), N = A2 are viewed as abelian groups.
Associate to fA a 3-sorted model URf = (M,N, S , pf , sM , sN),
where M, N and pf are as above, S = S(A) is a certain ring
containing R , and sM , sN are predicates describing the action
of S .
It is clear that Uf is interpretable in URf . A theorem of
Miasnikov states that (under some conditions on A) the
converse is also true!

Example

If A = R , then S = R .
If A = R × R , then S = R × R .
If A is a free nilpotent (Lie or associative) algebra, then S = R .
If A is the direct product of the latter, then S = R × R .
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The ring S

Uf = (A/Ann(A),A2, pf ) URf = (M,N, S , pf , sM , sN)

Let µ : R → P be an inclusion of rings. A P-module structure
on M is an enrichment (wrt µ) if:

1 Addition is the same in R-module and P-module cases.
2 And rm = µ(r)m, for every r ∈ R and m ∈ M.

An enrichment E of f is a pair of enrichments of M and N
such that the map f is P-bilinear for the P-modules.
E1 ≤ E2 if there exists P1 ↪→ P2 such that the P2-enrichments
of M and N are P2-enrichments of the P1-enrichments of M
and N.
There exists a maximal enrichment EM of f , and S = P(f )
the ring of EM .
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Well-structured algebras
An algebra scheme A(n, α), where n ∈ N, α = (αi ,j

k )a≤i ,j ,k≤n ∈ Zn3

is a family of algebras that satisfy the following conditions:
A(R) ∈ A(n, α) is an R-algebra, where R is a domain of
characteristic 0;
the underlying module of the algebra A(R) is a free R-module
of rank n;
there is a basis v1, . . . , vn of the module of the algebra A(R)
with structural constants α, i.e.

vivj =
∑

k=1,...,n

αi ,j
k vk

for all i , j ∈ {1, . . . , n}.
An algebra A(R) ∈ An,α is well-structured if:

(WS1) Ann(A(R)) ⊆ A(R)2.
(WS2) A(R)/A(R)2 is a free R-module.
(WS3) R = P(fA(R)) = S is an isomorphism.
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Abelian deformations and characterisation
theorem for algebras

Uf = (A/Ann(A),A2, pf ) URf = (M,N, S , pf , sM , sN)

Theorem
Let A(R) be a well-structured R-algebra and B be a ring. Then

B ≡ A if and only if B ' QA(T , c)

for some ring T ≡ R and some symmetric 2-cocycle
c ∈ S2(QA

/
QA2,Ann(QA)). That is B is an abelian deformation of

A(T ).

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + c(x1, y1)),

where x1, y1 ∈ A/
A2, x2, y2 ∈ A2/

Ann(A) and x3, y3 ∈ Ann(A).

Note that if R is a field or a local ring deformations disappear.
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Lie algebras of some groups

Theorem (Belegradek; Miasnikov-Sohrabi; CFKR)
Let R be an integral domain of characteristic zero. And let G be
one of the following groups:

UTn;
free nilpotent group;
directly indecomposable partially commutative nilpotent group.

Then LieR(G ) is well-structured.



Characterisation theorem for groups
Theorem (CFKR)
Let G be a Hall R-group so that

lower and upper central series of G coincide;
Lie(G ) is well-structured.

Let H be a group, H ≡ G . Then H is QG (S) over some ring S
such that S ≡ R as rings.

Corollary (Belegradek; Miasnikov-Sohrabi; CFKR)
Let R be a binomial ring. And let G be one of the following
groups:

UTn(R);
free nilpotent R-group;
directly indecomposable partially commutative nilpotent
R-group.

Let H be a group elementarily equivalent to G . Then H is QG (S)
over some ring S such that S ≡ R as rings.



Characterisation theorem for groups
Theorem (CFKR)
Let G be a Hall R-group so that

lower and upper central series of G coincide;
Lie(G ) is well-structured.

Let H be a group, H ≡ G . Then H is QG (S) over some ring S
such that S ≡ R as rings.

Corollary (Belegradek; Miasnikov-Sohrabi; CFKR)
Let R be a binomial ring. And let G be one of the following
groups:

UTn(R);
free nilpotent R-group;
directly indecomposable partially commutative nilpotent
R-group.

Let H be a group elementarily equivalent to G . Then H is QG (S)
over some ring S such that S ≡ R as rings.



THANK YOU!


